Skip to main content

Biomanipulation in shallow lakes: state of the art

  • Chapter
Shallow Lakes ’95

Part of the book series: Developments in Hydrobiology ((DIHY,volume 119))

Abstract

The current state of biomanipulation was the subject of much discussion at Shallow Lakes ′95. This led to a workshop focusing on the factors influencing the establishment of macrophytes and the mechanisms responsible for their stability following biomanipulation. The purpose of the current paper is to distil current knowledge on biomanipulation in shallow lakes gleaned from discussions at the conference and recent literature. Biomanipulation should be used in the theoretical context of two alternative stable equilibria, as the extreme perturbation required to move from a phytoplankton dominated state to one dominated by macrophytes. Understanding the nature of the factors and mechanisms responsible for turbid water, is critical if biomanipulation is to be appropriate. We suggest that with sufficient information, particular components of the fish community may be targeted and precise figures for removal, designed to exceed critical threshold values, may be set. Without this knowledge, a ‘play-safe’ strategy should be adopted and at least 75% of the fish removed. Stocking with piscivores may be a useful additional measure to fish removal. The principal objective of biomanipulation in shallow lakes is to generate a period of clear water of sufficient length to allow macrophytes to establish. To this aim, as well as for technical reasons, biomanipulation is best undertaken in winter and early spring to generate clear water as early as possible in the season. In the cases where grazing is important, this coincides with the spring peak of Daphnia spp. Biomanipulation may have to be repeated if macrophytes do not colonise effectively within the first season. The factors responsible for the lag in response of macrophytes in some cases and the potential mechanisms contributing to the maintenance of clear water in macrophyte beds are discussed. From empirical data sets from many lakes, both a relative increase in the piscivorous fish stock and a reduction in nutrient levels are thought to be important in stabilising the system in the long-term. Whether biomanipulation may lead to alternative equilibria (i.e. high diversity macrophyte communities with piscivorous fish at high P) is unknown. Further study of exceptional cases, theoretical modelling and development and analysis of more long-term (> 10 years) case histories is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agami, M. & Y. Waisel, 1986. The role of mallard ducks (Anas platyrhynchos)in distribution and germination of seeds of the submerged hydrophyte Najas marinaL. Oecologia 68: 473–475.

    Article  Google Scholar 

  • Anderson, M. G. & J. B. Low, 1976. Use of Sago pondweed on the Delta Marsh, Manitoba. J. Wildl. Mgmt 40: 233–242.

    Article  Google Scholar 

  • Backx, J. J. G. M. & M. P. Grimm, 1994. Mass removal of fish from Lake Wolderwijd, The Netherlands. Part II: Implementation phase. In Cowx, I. G. (ed.), Rehabilitation of Freshwater Fisheries. Fishing News Books, Blackwell Scientific Publications Ltd., Oxford, England.

    Google Scholar 

  • Balls, H., B. Moss & K. Irvine, 1989. The loss of submerged plants with eutrophication I. Experimental design, water chemistry, aquatic plant and phytoplankton biomass in experiments carried out in ponds in the Norfolk Broadland. Freshwat. Biol. 22: 71–87.

    Google Scholar 

  • Benndorf, J., 1992. The control of the indirect effects of biomanipulation. In Sutcliffe, D. W. & J. G. Jones (eds), Eutrophication: Research and Application to Water Supply. Freshwater Biological Association, Far Sawrey, Ambleside, Cumbria, England.

    Google Scholar 

  • Benndorf, J. & U. Miersch, 1991. Phosphorus loading and efficiency of biomanipulation. Verh. int. Ver. Limnol. 24: 2482–2488.

    CAS  Google Scholar 

  • Berg, S., E. Jeppesen & M. Søndergaard, 1997. Pike (Esox luciusL.) stocking as a biomanipulation tool 1. Effects on the fish population in Lake Lyng, Denmark. Hydrobiologia 342/343: 311–318.

    Article  Google Scholar 

  • Berg, S., E. Jeppesen, M. Sondergaard & E. Mortensen, 1994. Environmental effects of introducing whitefish, Coregonus lavaretus(L.) in Lake Ring. Hydrobiologia 275/276: 71–79.

    Article  Google Scholar 

  • Blindlow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Longterm pattern of alternative stable states in two shallow eutrophic lakes. Freshwat. Biol. 30: 159–167.

    Article  Google Scholar 

  • Breukelaar, A. W., E. H. R. R. Lammens, J. G. P. Klein Breteler & I. Tatrai, 1994. Effects of benthivorous beam (Abramis bramaL.) and carp (Cyprinus carpioL.) on sediment resuspension and concentrations of nutrients and chlorophyll a. Freshwat. Biol. 32: 113–121.

    Article  Google Scholar 

  • Bronmark, C., 1994. Effects of tench and perch on interactions in a freshwater, benthic food chain. Ecology 75: 1818–1828.

    Article  Google Scholar 

  • Bronmark, C., C. A. Paszkowski, W. M. Tonn & A. Hargeby, 1995. Predation as a determinant of size structure in populations of crucian carp (Carassius carassius)and tench (Tinea tinea). Ecol. Freshwat. Fish 4: 85–92.

    Article  Google Scholar 

  • Bronmark, C. & S. E. B. Weisner, 1992. Indirect effects of fish community structure on submerged vegetation in shallow, eutrophic lakes: an alternative mechanism. Hydrobiologia 243/244: 293–301.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, L., 1994. Top-down control of phytoplankton in a shallow hypertrophic lake: Little Mere (England). Hydrobiologia 275/276: 53–63.

    Article  Google Scholar 

  • Cook, M. F & E. P. Bergersen, 1988. Movements, Habitat Selection, and Activity Periods of Northern Pike in Eleven Mile Reservoir, Colorado. Trans. am. Fish. Soc. 117: 495–502.

    Article  Google Scholar 

  • Coops, H. & R. W. Doef, 1996. Submerged vegetation development in two shallow, eutrophic lakes. Hydrobiologia 340: 115–120.

    Article  Google Scholar 

  • Cryer, M., G. Peirson & C. R. Townsend, 1986. Reciprocal interactions between roach Rutilus rutilus,and zooplankton in a small lake: Prey dynamics and fish growth and recruitment. Limnol. Oceanogr. 31: 1022–1038.

    Article  Google Scholar 

  • Dawidowicz, P., 1990. Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. Hydrobiologia 200/201: 43–47.

    Article  Google Scholar 

  • de Bernardi, R. & G. Giussani, 1990. Are blue-green algae a suitable food for zooplankton? An overview. Hydrobiologia 200/201: 29–41.

    Article  Google Scholar 

  • de Nie, A. W., 1987. The decrease in aquatic vegetation in Europe and its consequences for fish populations. EIFAC Occasional Paper 19. FAO, Rome, 88 pp.

    Google Scholar 

  • Denny, P., 1987. Mineral cycling by wetland plants— a review. Arch. Hydrobiol. Beih. Ergebn. Limnol. 27: 1–25.

    CAS  Google Scholar 

  • Diehl, S., 1993. Effects of habitat structure on resource availability, diet and growth of benthivorous perch, Perca fluviatilis. Oikos 67: 403–414.

    Article  Google Scholar 

  • Dorgelo, J. & M. Heykoop, 1985. Avoidance of macrophytes by Daphnia longispina. Verh. int. Ver. Limnol. 22: 3369–3372.

    Google Scholar 

  • Driessen, O., B. Pex & H. Tolkamp, 1993. Restoration of a lake: First results and problems. Verh. int. Ver. Limnol. 25: 617–621.

    CAS  Google Scholar 

  • Eklov, P. & S. F. Hamrin, 1989. Predatory efficiency and prey selection: interactions between pike Esox lucius,perch Perca fluviatilisand rudd Scardinius erythrophthalmus. Oikos 56: 149–156.

    Article  Google Scholar 

  • Esler, D., 1989. An assessment of American coot herbivory of Hydrilla. J. Wildl. Mgmt 1147–1149.

    Google Scholar 

  • Faafeng, B. A. & A. Braband, 1990. Biomanipulation of a small urban lake-removal of fish exclude bluegreen blooms. Verh. int. Ver. Limnol. 24: 597–602.

    Google Scholar 

  • Giles, N., 1992. Wildlife after gravel: twenty years of practical research by the Game Conservancy and ARC. Game Conservancy, Fordingbridge, UK.

    Google Scholar 

  • Gliwicz, Z. M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia 200/201: 83–97.

    Article  Google Scholar 

  • Gliwicz, Z. M. & A. Jachner, 1992. Diel migrations of juvenile fish: a ghost of predation past or present? Arch. Hydrobiol. 124: 385–410.

    Google Scholar 

  • Grimm, M. P., 1991. Water quantity management of Dutch polders, adversely affecting the recruitment of northern pike (Esox luciusL.). Verh. int. Ver. Limnol. 24: 2443–2445.

    Google Scholar 

  • Grimm, M. P., 1994. The influence of aquatic vegetation and population biomass on recruitment of 0+ and 1+ northern pike (Esox luciusL.). In Cowx, I. G. (ed.), Rehabilitation of Freshwater Fisheries. Fishing News Books, Blackwell Scientific Publications Ltd., Oxford, England.

    Google Scholar 

  • Grimm, M. P. & J. J. G. M. Backx, 1990. The restoration of shallow eutrophic lakes, and the role of northern pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200/201: 557–566.

    Article  Google Scholar 

  • Grimm, M. P. & J. J. G. M. Backx, 1994. Mass removal of fish from Lake Wolderwijd, The Netherlands. Part I: Planning and strategy of a large-scale biomanipulation project. In Cowx, I. G. (ed.), Rehabilitation of Freshwater Fisheries. Fishing News Books, Blackwell Scientific Publications Ltd., Oxford, England.

    Google Scholar 

  • Hambright, K. D., R. J. Trebatoski & R. W. Drenner, 1986. Experimental study of the impacts of Bluegill (Lepomis macrochirus)and Largemouth Bass (Micropterus salmoides)on pond community structure. Can. J. Fish. aquat. Sci. 43: 1171–1176.

    Article  Google Scholar 

  • Hamrin, S. F., 1993. Lake restoration by cyprinid control in Satofta Bay (Lake Ringsjon). Verh. int. Ver. Limnol. 25: 487–493.

    CAS  Google Scholar 

  • Hanson, M. A. & M. G. Butler, 1994. Responses to food web manipulation in a shallow waterfowl lake. Hydrobiologia 279/280: 457–466.

    Article  Google Scholar 

  • Hart, P. & S. F. Hamrin, 1988. Pike as a selective predator. Effects of prey size, availability, cover and pike jaw dimensions. Oikos 51: 220–226.

    Google Scholar 

  • Horppila, J. & T. Kairesalo, 1990. A fading recovery: the role of roach (Rutilus rutilusL.) in maintaining high phytoplankton productivity and biomass in Lake Vesijarvi, southern Finland. Hydrobiologia 200/201: 153–165.

    Article  Google Scholar 

  • Hosper, S. H. & E. Jagtman, 1990. Biomanipulation additional to nutrient control for restoration of shallow lakes in The Netherlands. Hydrobiologia 200/201: 523–534.

    Article  Google Scholar 

  • Hosper, S. H. & M.-L. Meijer, 1993. Biomanipulation, will it work for your lake. A simple test for the assessment of chances for clear water, following drastic fish-stock reduction in shallow eutrophic lakes. Ecol. Engin. 2: 63–72.

    Google Scholar 

  • Irvine, K., B. Moss & H. Balls, 1989. The loss of submerged plants with eutrophication II. Relationships between fish and zooplankton in a set of experimental ponds, and conclusions. Freshwat. Biol. 22: 89–107.

    Google Scholar 

  • Jacobsen, L., M. R. Perrow, F. Landkildehus, M. Hjorne, T. L. Lauridsen & S. Berg, 1997. Interactions between piscivores, zoo-planktivores and zooplankton in submerged macrophytes: preliminary observations from enclosure and pond experiments. Hydrobiologia 342/343: 197–205.

    Article  Google Scholar 

  • James, W. F. & J. W. Barko, 1990. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperate reservoir. Arch. Hydrobiol. 2: 129–142.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjaer & K. Olrik, 1990a. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200/201: 219–227.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndegaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164.

    Article  Google Scholar 

  • Jeppesen, E., M. Søndergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Müller, O. Sortkjær, J. P. Jensen, K. Christoffersen, S. Bosselmann & E. Dall, 1990b. Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes 1: cross-analysis of three Danish case-studies. Hydrobiologia 200/201: 205–218.

    Article  Google Scholar 

  • Jupp, B. P. & D. H. N. Spence, 1977. Limitations of macrophytes in a eutrophic lake, Loch Leven. II. Wave action, sediments and waterfowl grazing. J. Ecol. 65: 431–446.

    CAS  Google Scholar 

  • Koch, M. S., I. A. Mendelssohn & K. L. McKee, 1990. Mechanism for the hydrogensulphide-induced growth limitation in wetland macrophytes. Limnol. Oceanogr. 35: 399–408.

    Article  CAS  Google Scholar 

  • Lammens, E. H. R. R., P. J. Boesewinkel-de Bruyn, H. Hoogveld & E. van Donk, 1992. P-load, phytoplankton, zooplankton and fish stock in Loosdrecht Lake and Tjeukemeer: confounding effect of predation and food availability. Hydrobiologia 233: 87–95

    Article  Google Scholar 

  • Lammens, E. H. R. R., H. W. de Nie, J. Vijverberg & W. L. T. van Densen, 1985. Resources Partitioning and Niche Shifts of Bream (Abramis brama)and Eel (Anguilla anguilla)Mediated by Predation of Smelt (Osmerus eperlanus)on Daphnia hyalina. Can. J. Fish. aquat. Sci. 42: 1342–1351.

    Article  Google Scholar 

  • Lammens, E. H. R. R., R. D. Gulati, M.-L. Meijer, E. van Donk, 1990. The first biomanipulation conference: a synthesis. Hydrobiologia 200/201: 619–628.

    Article  Google Scholar 

  • Lauridsen, T. L., E. Jeppesen & F. Ostergaard Andersen, 1993. Colonization of submerged macrophytes in shallow fish manipulated Lake Vaeng: impact of sediment composition and waterfowl grazing. Aquat. Bot. 46: 1–15.

    Article  Google Scholar 

  • Lauridsen, T. L., E. Jeppesen & M. Søndergaard, 1994. Colonization and succession of submerged macrophytes in shallow Lake Vaeng during the first five years following fish manipulation. Hydrobiologia 275/276: 233–242.

    Article  Google Scholar 

  • Lauridsen, T. L. & D. M. Lodge, 1996. Avoidance by Daphnia magnaof fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnol. Oceanogr. 22: 805–810.

    Google Scholar 

  • Lauridsen, T. L., L. J. Pedersen, E. Jeppesen & M. Søndergaard (in press). The importance of macrophyte bed size for composition and horizontal migration of cladocerans in a shallow lake. J. Plankton Res.

    Google Scholar 

  • Mauck, W. L. & D. W. Coble, 1973. Vulnerability of Some Fishes to Northern Pike (Esox lucius)Predation. J. Fish. Res. Bd Can. 28: 957–969.

    Article  Google Scholar 

  • Meijer, M.-L., A. W. Breukelaar & S. H. Hosper, 1994a. Mass removal of fish from Lake Wolderwijd, The Netherlands. Part III: Effects on water quality. In I. G. Cowx (ed.), Rehabilitation of Freshwater Fisheries. Fishing News Books, Blackwell Scientific Publications Ltd., Oxford, England.

    Google Scholar 

  • Meijer, M.-L., M. W. de Haan, A. W. Breukelaar & H. Buiteveld, 1990. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes? Hydrobiologia 200/201: 303–315.

    Article  Google Scholar 

  • Meijer, M.-L. & H. Hosper, 1997. Effects of biomanipulation in the large and shallow Lake Wolderwijd, The Netherlands. Hydrobiologia 342/343: 335–349.

    Article  Google Scholar 

  • Meijer, M.-L., E. Jeppesen, E. van Donk, B. Moss, M. Scheffer, E. Lammens, E. van Nes, J. A. van Berkum, G. L. de Jong, B. A. Faafeng & J. P. Jensen, 1994b. Long-term responses to fish-stock reduction in small shallow lakes: interpretation of five-year results of four biomanipulation cases in The Netherlands and Denmark. Hydrobiologia 275/276: 457–466.

    Google Scholar 

  • Meijer, M.-L., E. H. R. R. Lammens, A. J. P. Raat, J. G. P. Klein Breteler & M. P. Grimm, 1995. Development of fish communities in lakes after biomanipulation. Neth. J. aquat. Ecol. 29: 91–101.

    Article  Google Scholar 

  • Mitchell, S. F., D. P. Hamilton, W. S. MacGibbon, P. K. B. Nayar & R. N. Reynolds, 1988. Interactions between phytoplankton, submerged macrophytes, black swans and zooplankton in a shallow lake. Int. Revue ges. Hydrobiol. 73: 145–170.

    Article  CAS  Google Scholar 

  • Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201: 367–377.

    Article  Google Scholar 

  • Moss, B., J. H. Stansfield, K. Irvine, M. R. Perrow & G. L. Phillips, 1996. Progressive restoration of a shallow lake— a twelve-year experiment in isolation, sediment removal and biomanipulation. J. appl. Ecol. 33: 71–86.

    Article  Google Scholar 

  • Ozimek, T., R. D. Gulati & E. van Donk, 1990. Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200/201: 399–407.

    Article  Google Scholar 

  • Pennak, R. W., 1973. Some evidence for aquatic macrophytes as repellents for a limnetic species of Daphnia . Int. Revue ges. Hydrobiol. 58: 569–576.

    Article  Google Scholar 

  • Perrow, M. R., 1991. Reversing the effects of eutrophication upon fish communities: lessons from Broadland. In Lucas, M. C., I. Diack & L. Laird (eds), Interactions Between Fisheries and the Environment. Proceedings of the Institute of Fisheries Management, Nottingham, England: 111–125.

    Google Scholar 

  • Perrow, M. R., 1994. Practical aspects of the biomanipulation of fish populations. In Pitt, J.-A. & G. L. Phillips (eds), The Development of Biomanipulation Techniques & Control of Phosphorus Release from Sediments, EC LIFE project 92-3/UK/031, NRA Report No. 475/2/A. National Rivers Authority/Broads Authority, Bristol, UK.

    Google Scholar 

  • Perrow, M. R. & K. Irvine, 1992. The relationship between cladoceran body size and the growth of underyearling roach (Rutilus rutilus(L.)) in two shallow lowland lakes: a mechanism for density-dependent reductions in growth. Hydrobiologia 241: 155–161.

    Article  Google Scholar 

  • Perrow, M. R., B. Moss & J. H. Stansfield, 1994. Trophic interactions in a shallow lake following a reduction in nutrient loading: a long term study. Hydrobiologia 275/276: 43–52.

    Article  Google Scholar 

  • Perrow, M. R., J. Schütten, J. R. Howes, T. Holzer, F. J. Madgwick & A. J. D. Jowitt, 1997. Interactions between coot (Hypophthalmichthys molitrixand submerged macrophytes: the role of birds in the restoration process. Hydrobiologia 342/343: 241–255.

    Article  Google Scholar 

  • Persson, L., S. Diehl, L. Johansson, G. Andersson & S. F. Hamrin, 1991. Shifts in fish communities along the productivity gradient of temperate lakes-patterns and the importance of size-structured populations. J. Fish. Biol. 38: 281–293.

    Article  Google Scholar 

  • Persson, L. & P. Eklov, 1995. Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76: 70–81.

    Article  Google Scholar 

  • Phillips, G. L., D. F. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126

    Article  Google Scholar 

  • Phillips, G. L., M. R. Perrow & J. H. Stansfield, 1996. Manipulating the fish-zooplankton interaction in shallow lakes: a tool for restoration. In Greenstreet, S. P. R. & M. L. Tasker (eds), Aquatic Predators and Their Prey. Blackwell Scientific Publications Ltd., Oxford. England 174–183

    Google Scholar 

  • Prejs, A., A. Martyniak, S. Boron, P. Hliwa & P. Koperski, 1994. Food web manipulation in a small, eutrophic Lake Wirbel, Poland: effect of stocking with juvenile pike on planktivorous fish. Hydrobiologia 275/276: 65–70.

    Article  Google Scholar 

  • Reynolds, C. S., 1994. The ecological basis for the successful biomanipulation of aquatic communities. Arch. Hydrobiol. 130: 1–33.

    Google Scholar 

  • Ridley, H. N., 1930. The dispersal of plants throughout the world. L. Reeve & Co. Ashford, Kent, England. Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200/201: 475–486.

    Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative Equilibria in Shallow Lakes. TREE 8: 275–279.

    PubMed  CAS  Google Scholar 

  • Scheffer, M., M. van der Berg, A. Breukelaar, C. Breukers, H. Coops, R. Doef & M.-L. Meijer, 1994. Vegetated areas with clear water in turbid shallow lakes. Aquat. Bot. 49: 193–196.

    Article  Google Scholar 

  • Schriver, P., J. Bogestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish-Zooplankton—phytoplanktonlankton interactions: large-scale enclosure experiments in a shallow lake. Freshwat. Biol. 33: 255–270.

    Article  Google Scholar 

  • Shapiro, J., 1990. Biomanipulation: the next phase-making it stable. Hydrobiologia 200/201: 13–27.

    Article  Google Scholar 

  • Søndergaard, M., L. Bruun, T. L. Lauridsen, E. Jeppesen & T. Vindbaek Madsen, (in press). The impact of grazing waterfowl on submerged macrophytes: in situexperiments in a shallow eutrophic lake. Aquat. Bot.

    Google Scholar 

  • Søndergaard, M., E. Jeppesen & S. Berg, 1997. Pike (Esox luciusL.) stocking as a biomanipulation tool 2. Effects on the lower trophic levels in Lake Lyng, Denmark. Hydrobiologia 342/343: 319–325.

    Article  Google Scholar 

  • Spencer, C. N. & D. L. King, 1984. Role of fish in Regulation of Plant and Animal Communities in Eutrophic Ponds. Can J. Fish. aquat. Sci. 41: 1851–1855.

    Article  Google Scholar 

  • Stansfield, J. H. & M. R. Perrow, 1994. The influence of benthivorous fish upon benthic communities. In Pitt, J.-A. & G. L. Phillips (eds), The Development of Biomanipulation Techniques & Control of Phosphorus Release from Sediments, EC LIFE project 92-3/UK/031, NRA ReportNo. 475/2/A. National Rivers Authority/Broads Authority, Bristol, UK.

    Google Scholar 

  • Stansfield, J. H., M. R. Perrow, L. D. Tench, A. J. D. Jowitt & A. A. L. Taylor, 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure.

    Google Scholar 

  • Tatrai, I. & V. Istvanovics, 1986. The role of fish in the regulation of nutrient cycling in lake Balaton, Hungary. Freshwat. Biol. 16: 417–424.

    Article  Google Scholar 

  • Tatrai, I., E. H. R. R. Lammens, A. W. Breukelaar & J. G. P. Klein Breteler, 1994. The impact of mature cyprinid fish on the composition and biomass of benthic macroinvertebrates. Arch. Hydrobiol. 131: 309–320.

    Google Scholar 

  • Ten Winkel, E. H. & J. T. Meulemans, 1984. Effects of fish upon submerged vegetation. Hydrobiol. Bull. 18: 157–158.

    Article  Google Scholar 

  • Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland system. Limnol. Oceanogr. 29: 472–486.

    Article  Google Scholar 

  • Turner, A. M. & G. G. Mittelbach, 1992. Effects of grazer community composition and fish on algal dynamics. Can J. Fish. aquat. Sci. 49: 1908–1915.

    Article  Google Scholar 

  • Underwood, G. J. C., J. D. Thomas & J. H. Baker, 1992. An experimental investigation of interactions in snail-macrophyte-epiphyte systems. Oecologia 91: 587–595.

    Article  Google Scholar 

  • Van Berkum, J. A., M. Klinge & M. P. Grimm, 1995. Biomanipulation on the Duinigermeer: first results. Neth. J. aquat. Ecol. 29: 472–486.

    Article  Google Scholar 

  • Van Densen, W. L. T., 1994. Predator enhancement in freshwater fish communities. In Cowx, I. G. (ed.), Rehabilitation of Freshwater Fisheries. Fishing News Books, Blackwell Scientific Publications Ltd., Oxford, England.

    Google Scholar 

  • Van der Vlugt, J. C., P. A. Walker, J. van der Does & A. J. P. Raat, 1992. Fisheries management as an additional lake restoration measure: biomanipulation scaling-up problems. Hydrobiologia 233: 213–225.

    Article  Google Scholar 

  • Van Donk, E., E. de Deckere, J. G. P. Klein Breteler & J. T. Meulemans, 1994b. Herbivory by waterfowl and fish on macrophytes in a biomanipulated lake: effects on long-term recovery. Verh. int. Ver. Limnol. 25: 2139–2143.

    Google Scholar 

  • Van Donk, E., M. P. Grimm, R. D. Gulati, P. G. M. Heuts, W. A. de Kloet & L. van Liere, 1990a. First attempt to apply wholelake food-web manipulation on a large scale in the Netherlands. Hydrobiologia 200/201: 291–301.

    Article  Google Scholar 

  • Van Donk, E., M. P. Grimm, R. D. Gulati & J. P. G. Klein Breteler, 1990b. Whole-lake food-web manipulation as a means to study community interactions in a small ecosystem. Hydrobiologia 200/201: 275–289.

    Article  Google Scholar 

  • Van Donk, E., M. P. Grimm, P. G. M. Heuts, G. Blom, K. Everards & O. F R. van Tongeren, 1994a. Use of mesocosms in a shallow eutrophic lake to study the effects of different restoration measures. Arch. Hydrobiol. Beih. Ergebn. Limnol. 40. 283–294

    Google Scholar 

  • Van Donk, E. & R. D. Gulati, in press. Transition of a lake to turbid state six years after biomanipulation: mechanisms and pathways. Wat. Sci. Tech.

    Google Scholar 

  • Van Donk, E., R. D. Gulati, A. Iedema & J. T. Meulemans, 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 251: 19–26.

    Article  Google Scholar 

  • Van Liere, L., R. D. Gulati, F. G. Wortelboer & E. H. R. R. Lammens, 1990. Phosphorus dynamics following restoration measures in the Loosdrecht Lakes (The Netherlands). Hydrobiologia 191: 87–95.

    Article  Google Scholar 

  • Werner, E. E., J. F. Gilliam, D. J. Hall & G. G. Mittelbach, 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64: 1540–1548.

    Article  Google Scholar 

  • Winfield, I. J., 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus,rudd, Scardinius erythwphthalmus,and perch, Perca fluviatilis. J. Fish. Biol. 29: 37–48.

    Article  Google Scholar 

  • Wium-Anderson, S., U. Anthoni, C. Christophersen & G. Houen, 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39: 187–190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lech Kufel Andrzej Prejs Jan Igor Rybak

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Perrow, M.R., Meijer, ML., Dawidowicz, P., Coops, H. (1997). Biomanipulation in shallow lakes: state of the art. In: Kufel, L., Prejs, A., Rybak, J.I. (eds) Shallow Lakes ’95. Developments in Hydrobiology, vol 119. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5648-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5648-6_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6382-1

  • Online ISBN: 978-94-011-5648-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics