Skip to main content

The dynamics and importance of picoplankton in shallow, dystrophic lake in comparison with surface waters of two deep lakes with contrasting trophic status

  • Chapter
Shallow Lakes ’95

Part of the book series: Developments in Hydrobiology ((DIHY,volume 119))

Abstract

The abundance, biovolume and seasonal patterns of autotrophic picoplankton and larger phytoplankton were studied in 1993 in the shallow, dystrophic Lake Flosek and in the epilimnion of up to 5 m in two non-dystrophic, deep lakes: mesotrophic Lake Majcz and eutrophic Lake Mikotajskie. In all the three lakes picoplankton exhibited well visible seasonal patterns. In non-dystrophic lakes spring/early summer abundance peaks were observed while in Lake Flosek two abundance peaks occurred: a smaller one in spring and second, bigger, in autumn.

It was noticed that maximal picoplankton abundances did not coincided with abundance peaks of larger phytoplankton. The share of picoplankton in the total phytoplankton community in two less productive lakes (Flosek and Majcz) varied between 7 and 24% during picoplankton abundance peaks and about 5% during the rest of the vegetation season. In Lake Mikolajskie picoplankton’s share was noticeable only during the abundance peak (13–6%) while it was insignificant (about 1% of the total phytoplankton biovolume) during the rest of the season.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amblard, C., J-F. Carrias, G. Bourdier & N. Maurin, 1995. The microbial loop in a humic lake: seasonal and vertical variations in the structure of different communities. Hydrobiologia 300/301: 71–84.

    Article  Google Scholar 

  • Bogdan, K. G. & J. J. Gilbert, 1987. Quantitative comparison of food niches in some freshwater zooplankton. A multi-tracer-cell approach. Oecologia, Berlin 72: 331–340.

    Google Scholar 

  • Burns, C. W. & J. G. Stockner, 1991. Picoplankton in six New Zealand lakes: abundance in relation to season and trophic state. Int. Revue ges. Hydrobiol. 76: 523–536.

    Article  Google Scholar 

  • Cole, J. J. & N. F. Caraco, 1993. The pelagic microbial food web of oligotrophic lakes. In Ford, T. E. (ed.), Aquatic microbiology: an ecological approach. Blackwell Scientific Publications, 101–111.

    Google Scholar 

  • Hensen, K., 1962. The dystrophic lake type. Hydrobiologia 19: 183–191.

    Article  Google Scholar 

  • Johnson, P. W. & J. McN. Sieburth, 1979. Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24: 928–935.

    Article  Google Scholar 

  • Jones, R. I., 1992. The influence of humic substances on lacustrin planktonic food chains. Hydrobiologia 229: 73–91.

    Article  CAS  Google Scholar 

  • Jones, R. I. The forms and distribution of carbon in a deep, oligotrophic lake (Loch Ness, Scotland). Verh. int. Ver. Limnol. (in press).

    Google Scholar 

  • Kajak, Z., 1978. The characteristics of a temperate eutrophic, dimictic lake (Lake Mikolajskie, Northern Poland). Int. Revue ges. Hydrobiol. 63: 451–480.

    Article  Google Scholar 

  • Raven, J. A., 1986. Physiological consequences of extremely small size for autotrophic organisms in the sea. In Platt, T. D. & W. K. W. Li (eds), Photosynthetic picoplankton. Can. Bull. Fish. aquat. Sci. 214: 1–70.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG model of seasonal succession of planktonic events in fresh water. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • Stockner, J. G., 1987. Lake fertilization: The enrichment cycle and lake sockeye salmon (Oncorhyncus nerka) production. In Smith, H. D., L. Margolis & C. C. Wood (eds), Sockeye salmon (Oncorhyncus nerka)population biology and future management. Can. Spec. Publ. Fish. aquat. Sci. 96: 198–215.

    Google Scholar 

  • Stockner, J. G., 1988. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33: 765–775.

    Article  CAS  Google Scholar 

  • Stockner, J. G., 1991. Autotrophic picoplankton in freshwater ecosystems: the view from the summit. Int. Revue ges. Hydrobiol. 76: 483–493.

    Article  Google Scholar 

  • Stockner, J. G. & N. J. Anba, 1986. Algal picoplankton from marine and freshwater ecosystems: A multidisciplinary perspective. Can. J. Fish. aquat. Sci. 43: 2472–2503.

    Article  Google Scholar 

  • Stockner, J. G. & K. S. Shortreed, 1988. Response of Anabaenaand Synechococcusto manipulation of nitrogen: phosphorus ratios in a lake fertilization experiment. Limnol. Oceanogr. 33: 1348–1361.

    Article  CAS  Google Scholar 

  • Tranvic, L. J., 1992. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229: 104–114.

    Google Scholar 

  • Tsuji, T., K. Ohki & Y. Fujita, 1986. Determination of photosynthetic pigment composition in an individual phytoplankton cell in seas and lakes using fluorescence microscopy: properties of the fluorescence emitted from picoplankton cells. Mar. Biol. 93: 343–349.

    Article  CAS  Google Scholar 

  • Vörös, L., P. Gulyas & J. Nemeth, 1991. Occurrence, dynamics and production of picoplankton in Hungarian shallow lakes. Int. Revue ges. Hydrobiol. 76: 607–629.

    Article  Google Scholar 

  • Waterbury, J. B., S. W. Watson, R. R. L. Guillard & L. E. Brand, 1979. Widespread occurrence of unicellular, marine, planktonic caynobacterium. Nature, London 277: 293–294.

    Article  Google Scholar 

  • Wehr, J. D., 1991. Nutrient and grazer-mediated effects on picoplankton and size structure of phytoplankton communities. Int. Revue ges. Hydrobiol. 76: 643–659.

    Article  CAS  Google Scholar 

  • Weisse, T, 1993. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In Jones, J. G. (ed.), Advances in microbial ecology. Plenum Press, New York 13: 327–370.

    Chapter  Google Scholar 

  • Zevenboom, W., 1986. Ecophysiology of nutrient uptake, photosynthesis and growth. In Piatt, T. D. & W. K. W. Li (eds), Photosynthetic picoplankton. Can. Bull. Fish. aquat. Sci. 214: 391–422.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lech Kufel Andrzej Prejs Jan Igor Rybak

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jasser, I. (1997). The dynamics and importance of picoplankton in shallow, dystrophic lake in comparison with surface waters of two deep lakes with contrasting trophic status. In: Kufel, L., Prejs, A., Rybak, J.I. (eds) Shallow Lakes ’95. Developments in Hydrobiology, vol 119. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5648-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5648-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6382-1

  • Online ISBN: 978-94-011-5648-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics