Skip to main content

Micro-Branching as an Instability in Dynamic Fracture

  • Conference paper

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 49))

Abstract

Experiments in brittle, amorphous PMMA indicate that the process of dynamic fracture is governed by a micro-branching instability. At a critical velocity, vc, a single crack undergoes an abrupt, well-defined transition to microscopic crack branching. As a result, the velocity of the crack develops oscillations, the mean acceleration decreases and structure is formed on the fracture surface. Beyond vc the total fracture surface created is a linear function of the energy release rate. Micro-branch profiles follow a power law and develop into macroscopic crack branching.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. N. F. Mott, Engineering 165, 16, (1948).

    Google Scholar 

  2. A good review of this work is presented in the book Dynamic Fracture Mechanics, L. B. Freund (Cambridge University Press, New York, 1990).

    Google Scholar 

  3. J. J. Mecholsky in Strength of Inorganic Glass, edited by C. R. Kurkijan (Plenum, New York, 1985 ).

    Google Scholar 

  4. K. Ravi Chandar and W. G. Knauss, Int. J. Fract. 26, 141 (1984).

    Article  Google Scholar 

  5. K. Ravi-Chandar and W. G. Knauss, Int. J. Fract. 26, 65 (1984).

    Article  Google Scholar 

  6. J. Fineberg, S. P. Gross, M. Marder, and H. L. Swinney, Phys. Rev. Lett. 67, 457 (1991); ibid. Phys. Rev. B45, 5146 (1992).

    Google Scholar 

  7. E. Sharon., S. P. Gross, and J. Fineberg, Phys. Rev. Lett. 74, 5096 (1995).

    Article  ADS  Google Scholar 

  8. J. F. Boudet, S. Ciliberto, and V. Steinberg, Europhys. Lett. 30, 337 (1995).

    Article  ADS  Google Scholar 

  9. S. P. Gross, J. Fineberg, W. D. McCormick, M. Marder, and H. L. Swinney, Phys. Rev. Lett. 71, 3162 (1993).

    Article  ADS  Google Scholar 

  10. E. Sharon, S. Gross, and J. Fineberg, Phys. Rev. Lett. 76, 2117 (1996).

    Article  ADS  Google Scholar 

  11. The PMMA used has the following static properties: Young’s modulus = 3.1 x 103MPa; Poisson ratio = 0.35; VR=926 m/s.

    Google Scholar 

  12. We used the value of 2.8 x 1010 erg/cm2 for E which was obtained by direct measurement using a plate of the dimensions and manufacture used in the experiments.

    Google Scholar 

  13. For PMMA see B. Cotterell, App. Mat. Res., 227 (1965);

    Google Scholar 

  14. In homalite-100 and polycarbonate see M. Ramulu and A. S. Kobayashi, Int. J. of Fracture 27, 187 (1985);

    Google Scholar 

  15. In glass see J.W. Johnson and D. G. Holloway, Phil. Mag. 17, 899 (1968).

    Google Scholar 

  16. E. H. Yoffe, Philos. Mag. 42, 739 (1951).

    MathSciNet  MATH  Google Scholar 

  17. F. F. Abraham, D. Brodbeck, R. A. Rafey, and W. E. Rudge, Phys. Rev. Lett. 73, 272 (1994). Branching at 30° was observed but this may correspond to the direction of symmetry of the hexagonal lattice used in the simulation

    Google Scholar 

  18. P. S. Theocaris and H. Georgiadis, Int. J. Fract 29, 181 (1985);

    Google Scholar 

  19. J. G. Michopoulos and P. S. Theocaris, Int. J. Engng. Sci 29, 13 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. P. Kusy and M. J. Katz, Polymer 19, 1345 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Fineberg, J., Gross, S.P., Sharon, E. (1997). Micro-Branching as an Instability in Dynamic Fracture. In: Willis, J.R. (eds) IUTAM Symposium on Nonlinear Analysis of Fracture. Solid Mechanics and its Applications, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5642-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5642-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6379-1

  • Online ISBN: 978-94-011-5642-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics