Skip to main content

Scaling in Nonlinear Fracture Mechanics

  • Conference paper
IUTAM Symposium on Nonlinear Analysis of Fracture

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 49))

Abstract

The paper1 presents a review of recent results on the problem of size effect (or the scaling problem) in nonlinear fracture mechanics of quasibrittle materials and on the validity of recent claims that the observed size effect may be caused by the fractal nature of crack surfaces. The problem of scaling is approached through dimensional analysis and asymptotic matching. Large-size and small-size asymptotic expansions of the size effect on the nominal strength of structures are presented, considering not only specimens with large notches (or traction-free cracks) but also structures with no notches. Simple size effect formulas matching the required asymptotic properties are given. Regarding the fractal nature of crack surfaces, it is concluded that it cannot be the cause of the observed size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ACI Comm. 446 (1992). “Fracture mechanics of concrete: Concepts, models and determination of material properties,” State-of-Art Report of Am. Concrete Institute (ACI), Fracture Mechanics of Concrete Structures, Z.P. Bažant, Ed., Elsevier, London, 1–140.

    Google Scholar 

  • Bažant, Z.P. (1983). “Fracture in concrete and reinforced concrete”, Mechanics of Geomaterials: Rocks, Concretes, Soils, Pre-prints, IUTAM Prager Symposium held at Northwestern University, eds Z.P. Baiant, Evanston, IL, 281–317.

    Google Scholar 

  • BaBažant, Z. P. (1984). “Size effect in blunt fracture: Concrete, rock, metal.” J. of Engng. Mechanics, ASCE,110, 518–535.

    Article  Google Scholar 

  • Bažant, Z.P. (1993). “Scaling Laws in Mechanics of Failure.” J. of Engrg. Mech., ASCE, 119,1828–1844.

    Article  Google Scholar 

  • Bažant, Z.P. (1995a). “Scaling theories for quasibrittle fracture: Recent advances and new directions.” in Fracture Mechanics of Concrete Struc- tures(Proc., 2nd Int. Conf. on Fracture Mech. of Concrete and Concrete Strucutres (FraMCoS-2), held at ETH, Zürich), ed. by F.H. Wittmann, Aedificatio Publishers, Freiburg, Germany, 515–534.

    Google Scholar 

  • Bažant, Z.P. (1995b). “Scaling of quasibrittle fracture and the fractal question.” ASME J. of Materials and Technology 117, 361–367 (Materials Division Special 75th Anniversary Issue).

    Google Scholar 

  • Bažant, Z.P. (1995c). “Scaling of quasibrittle fracture: II. The fractal hypothesis, its critique and Weibull connection.” Int. Journal of Fracture, submitted to.

    Google Scholar 

  • Bažant, Z.P., and Cedolin, L. (1991). Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories(textbook and reference volume), Oxford University Press, New York.

    Google Scholar 

  • Bažant, Z.P., and Cedolin, L. (1991). Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories(textbook and reference volume), Oxford University Press, New York.

    Google Scholar 

  • Bažant, Z.P., and Kazemi, M. T. (1990). “Size effect in fracture of ceramics and its use to determine fracture energy and effective process zone length.” J. of American Ceramic Society 73, 1841–1853.

    Article  Google Scholar 

  • Bažant, Z.P., and Kazemi, M.T. (1991). “Size effect on diagonal shear failure of beams without stirrups.” A CI Structural J. 88, 268–276.

    Google Scholar 

  • Bažant, Z.P., and Li, Z. (1995). “Modulus of rupture: size effect due to fracture initiation in boundary layer.” J. of Struct. Engrg. ASCE, 121, 739–746.

    Article  Google Scholar 

  • Bažant, Z.P., Lin, F.-B., and Lippmann, H. (1993). “Fracture energy release and size effect in borehole breakout. Int. Journal for Numerical and Analytical Methods in Geomechanics 17 1–14.

    Article  ADS  MATH  Google Scholar 

  • Bažant, Z.P., Ožbolt, J., and Eligehausen, R. (1994). “Fracture size effect: review of evidence for concrete structures.” J. of Struct. Engrg., ASCE, 120, 2377–2398.

    Article  Google Scholar 

  • Bažant, Z. P., and Pfeiffer, P. A. (1987). “Determination of fracture energy from size effect and brittleness number.” A CI Materials Jour., 84, 463–480.

    Google Scholar 

  • Bažant, Z.P., and Xi, Y. (1991). “Statistical size effect in quasi-brittle structures: II. Nonlocal theory.” ASCE J. of Engineering Mechanics, 117, 2623–2640.

    Article  Google Scholar 

  • Bender, M.C., and Orszag, S.A. (1978). Advanced mathematical methods for scientists and engineers. McGraw Hill, New York (chapters 9–11 ).

    MATH  Google Scholar 

  • Borodich, F. (1992). “Fracture energy of fractal crack, propagation in con-crete and rock” (in Russian). Doklady Akademii Nauk 325 1138–1141.

    Google Scholar 

  • Carpinteri, A. (1986) Mechanical Damage and Crack Growth in Concrete. Martinus Nijhoff Publishers, Doordrecht.

    Book  MATH  Google Scholar 

  • Carpinteri, A., Chiaia, B., and Ferro, G. (1993). “Multifractal scaling law for the nominal strength variation of concrete structures”, in Size effect in concrete structures(Proc., Japan Concrete Institute Intern. Work-shop held in Sendai, Japan, Nov. 1995), eds M. Mihashi, H. Okamura and Z.P. Bažant, E. & F.N. Spon, London—New York, 193–206.

    Google Scholar 

  • Carpinteri, A. (1994). “Fractal nature of material microstructure and size effects on apparent mechanical properties.” Mechanics of Materials 18, 89–101.

    Article  Google Scholar 

  • Cahn, R. (1989). “Fractal dimension and fracture.” Nature 338, 201–202.

    Article  ADS  Google Scholar 

  • Gettu, R., Bažant, and Karr, M. E. (1990). “Fracture properties and brit- tleness of high-strength concrete”, A CI Materials Journal 87, 608–618.

    Google Scholar 

  • Jirásek, M., and Bažant (1995). “Macroscopic fracture characteristics of random particle systems.” Intern. J. of Fracture, 69, 201–228.

    Article  ADS  Google Scholar 

  • Lange, D.A., Jennings, H.M., and Shah, S.P. (1993). “Relationship between fracture surface roughness and fracture behavior of cement paste and mortar.” J. of Am. Ceramic Soc. 76, 589–597.

    Article  Google Scholar 

  • Mandelbrot, B.B., Passoja, D.E., and Paullay, A. (1984). “Fractal character of fracture surfaces of metals.” Nature 308, 721–722.

    Article  ADS  Google Scholar 

  • Mecholsky, J.J., and Mackin, T.J. (1988). “Fractal analysis of fracture in ocala chert.” J. Mat. Sci. Letters 7, 1145–1147.

    Article  Google Scholar 

  • Mosolov, A.B., and Borodich, F.M. (1992). “Fractal fracture of brittle bodies under compression” (in Russian). Doklady Akademii Nauk 324, 546–549.

    MathSciNet  Google Scholar 

  • Planas, J., and Elices, M. (1988a). “Size effect in concrete structures: mathematical approximations and experimental validation.” Cracking and Damage, Strain Localization and Size Effect, Proc. of France-U.S. Workshop, Cachan, France, eds J. Mazars and Z.P. Bažnt, pp. 462–476.

    Google Scholar 

  • Planas, J., and Elices, M. (1988b). “Conceptual and experimental problems in the determination of the fracture energy of concrete.” Proc., Int. Workshop on Fracture Toughness and Fracture Energy, Test Methods for Concrete and Rock, Tohoku Univ., Sendai, Japan, pp. 203–212.

    Google Scholar 

  • Planas, J., and Elices, M. (1989), “Size effct in concrete structures: mathematical approximations and experimental validation”, in Cracking and Damage, ed. by J. Mazars and Z.P. Bažant, Elsevier, London, 462–476.

    Google Scholar 

  • Planas, J., and Elices, M. (1993). “Drying shrinkage effect on the modulus of rupture.” Creep and Shrinkage in Concrete Structures(Proc., ConCreep 5, Barcelona), eds Z.P. Baant and I. Carol, E. Si F.N. Spon, London, 357–368.

    Google Scholar 

  • Saouma, V.C., Barton, C., and Gamal-el-Din, N. (1990). “Fractal charac-terization of concrete crack surfaces.” Engrg. Fracture Mechanics 35.

    Google Scholar 

  • Saouma, V.C., and Barton, C.C. (1994). “Fractals, fracture and size effect in concrete.” J. of Engrg. Mechanics ASCE 120, 835–854.

    Article  Google Scholar 

  • Xie, Heping (1993). Fractals in Rock Mechanics. Balkema, Rotterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bažant, Z.P. (1997). Scaling in Nonlinear Fracture Mechanics. In: Willis, J.R. (eds) IUTAM Symposium on Nonlinear Analysis of Fracture. Solid Mechanics and its Applications, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5642-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5642-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6379-1

  • Online ISBN: 978-94-011-5642-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics