Large-Eddy Simulations of Three-Dimensional Spatially-Developing Round Jets

  • Gérald Urbin
  • Olivier Métais
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 5)


We present a statistical and topological study of the spatial growth of a round jet up to twelve diameters downstream from the nozzle. The use of large-eddy simulations allow us to reach high Reynolds number values: here, Re = 25000. It is shown that, at a reasonable computational cost, good comparisons with experimental data can be achieved. We successively consider the case of the “natural” unexcited jet and the case of the jet excited with specified inflow perturbations at the nozzle. The natural jet alternatively exhibits axisymmetric (rings) and helicoidal vortex structures. Further downstream, we observe that the alternate inclination of the rings yields localized alternated pairings. We have showed that this structure can be forced to appear from the nozzle with an adhoc excitation leading to the preferential development of the jet in one particular direction. When axisymmetric excitation is applied, after vortex rings have formed, pairs of counter-rotating longitudinal vortices appear linked with primary rings and these create horizontal side jets. Longitudinal vortices are still present when a helicoidal excitation is imposed.


Large Eddy Simulation Axial Velocity Vortex Ring Longitudinal Vortex Vorticity Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abid, M. and Brachet, M.E. (1992) Mécanisme de génération des jets latéraux dans les jets axisymetriques forcés, C.R.Acad.Sci.Paris.Google Scholar
  2. Abramovich, G.N. (1957) The turbulent jet in a moving fluid. Library translation n° 28.Google Scholar
  3. Becker, H.A. and Massaro, T.A. (1968) Vortex evolution in a round jet. J.Fluid Mech, 31, pp 435–448.ADSCrossRefGoogle Scholar
  4. Brancher, P. (1996) Etude numérique des instabilités secondaires de jets. Thèse de l’École polytechnique, Paris, France.Google Scholar
  5. Broze, G. and Hussain, F. (1996) Transition to chaos in a forced jet: intermittency, tangent bifurcations and hysteresis. J. Fluid Mech, 311, pp 37–71.ADSCrossRefMathSciNetGoogle Scholar
  6. Cohen, J. and Wygnansky I. (1987) The evolution of instabilities in the axisymmetric jet, part1: the linear growth of disturbances near the nozzle. J.Fluid Mech., 176, pp 191–219.ADSCrossRefGoogle Scholar
  7. Comte, P., Fouillet, Y. and Lesieur, M., (1992) Simulation numérique des zones de mélange compressibles. Revue scientifique et technique de la defense, 3ème trimestre.Google Scholar
  8. Crow, S.C. and Champagne, F.H. (1971) Orderly structure in jet turbulence. J.Fluid Mech, 48, pp 547–591.ADSCrossRefGoogle Scholar
  9. Djeridane, T. (1996) Contribution à l’étude experimentale de jets turbulents axisymétriques à densité variable. Thèse de l’Université d’Aix-Marseille II Google Scholar
  10. Fallon, B. (1994) Simulation des grandes échelles d’écoulements turbulents stratifiés en densité. Thèse de l’Institut National Polytechnique de Grenoble.Google Scholar
  11. Gamet L. and Estivalezes J.L (1995) Simulation numérique de jets isothermes et chauffés en régime transonique. Société française des thermiciens. Journée d’études du 15 mars.Google Scholar
  12. Grand, D., Coulon, N., Magnaud, J.P. and Villand, M. (1988) Computation of flow with distributed resistance and heat sources. In Proc. Third Intl. Symp. on Refined Flow Modelling and Turbulence Measurements, Nipon Toshi Center Tokyo (ed. Y. Iwasa), pp 487–494.Google Scholar
  13. Hussain, F. and Zaman K.B.M.Q. (1981) The “preferred mode” of the axisymmetric jet J.Fluid Mech, 110, pp. 39–71.ADSCrossRefGoogle Scholar
  14. Jendoubi, S. and Strykowski, P. J. (1994) Absolute and convective instabilitiy of axisymmetric jets with external flow, Phys. Fluids 6(9), pp 3000–9.ADSCrossRefzbMATHGoogle Scholar
  15. Kusek, Corke and Reisenthel, Seeding of helical modes in the initial region of an axisymmetric jet (1990), Experiments in Fluids, 10, pp 116–124.ADSGoogle Scholar
  16. Lasheras, J.C., Lecuona A. and Rodriguez, P. (1991) Three dimensionnal structure of the vorticity field in the near region of laminar co-flowing forced jets. In The Global Geometry of Turbulence, edited by J. Jimenez (Plenum Press, New-York).Google Scholar
  17. Lesieur, M. and Métais, O. (1996) New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid. Mech., 28, pp 45–82.ADSCrossRefGoogle Scholar
  18. Liepmann, D. and Gharib, M. (1992) The role of streamwise vorticity in the near-field entrainment of round jets. J.Fluid Mech, 245, pp 643–668.ADSCrossRefGoogle Scholar
  19. Longmire, E.K. and Duong, L.H. (1996) Bifurcating jets generated with stepped and sawtooth nozzles. Phys. Fluids, 8 (4), pp 978–992.Google Scholar
  20. Martin, J.E. and Meiburg, E. (1991) Numerical investigation of three-dimensionally evolving jets subject to axisymmetric and azimuthal perturbations. J.Fluid Mech, 230, pp 271–318.ADSCrossRefzbMATHGoogle Scholar
  21. Melander, M.R., Hussain, F. and Basu, E. (1991) Breakdown of a circular jet into turbulence. In Proc. of eighth Symposium on Turbulent Shear Flow, Munich.Google Scholar
  22. Métais, O. and Lesieur, M. (1992) Spectral large-eddy simulation of isotropic and stably stratified turbulence. J.Fluid Mech, 239, pp 157–194.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. Michalke, A. and Hermann, G. (1982) On the inviscid instability of a circular jet with external flow. J.Fluid Mech, 114, pp 343–359.ADSCrossRefzbMATHGoogle Scholar
  24. Monkewitz, P.A. and Pfizenmaier, E. (1991) Mixing by’ side jets’ in strongly forced and self-excited round jets. Phys. Fluis A, 3(5), pp 1356–1361.ADSCrossRefGoogle Scholar
  25. Monkewitz, P.A. and Sohn, K.D. (1988) Absolute instability in hot jets. A.I.A.A. J., 26, pp 911–916.Google Scholar
  26. Morris, P.J. (1976) The spatial viscous instability of axisymmetric jets. J.Fluid Mech, 77, pp 511–529.ADSCrossRefzbMATHGoogle Scholar
  27. Moore, C.J. (1977) The role of shear-layer instability waves in jet exhaust noise. J.Fluid Mech, 80, pp 321–367.ADSCrossRefGoogle Scholar
  28. Orlanski, I. (1976) A simple boundary condition for unbounded hyperbolic flows. J.Comp.Phys., 21, pp 251–269.ADSCrossRefzbMATHGoogle Scholar
  29. Petersen, R.A. (1978) Influence of wave dispersion on vortex pairing in a jet. J.Fluid Mech, 89, pp 469–495.ADSCrossRefGoogle Scholar
  30. Reeder, M.F. and Samimy, M. (1996) The evolution of a jet with vortex-generating tabs: real-time visualization and quantitative measurements. J.Fluid Mech, 311, pp 73–118.ADSCrossRefGoogle Scholar
  31. Reynier, P., Kourta, A. and Ha-Minh, H. (1995) Simulation numérique de jets ronds turbulents, compressibles et instationnaires. Société française des thermiciens. Journée d’études du 15 mars.Google Scholar
  32. Silveira-Neto, A., Grand, D. Métais, O. Lesieur, M., A numerical investigation of the coherent structures of turbulence behind a backward-facing step. J.Fluid Mech, 256 (1993), pp. 1–55.ADSCrossRefzbMATHGoogle Scholar
  33. Villermaux, E. and Hopfinger, E. (1994) Self-sustained oscillations of a confined jet: a case study for the non-linear delayed saturation model. Physica D, 72, pp 230–243.ADSCrossRefzbMATHGoogle Scholar
  34. Verzicco, R. and Orlandi, P. (1994) Direct simulations of the transitional regime of a circular jet. Phys.Fluids, 6(2), pp 751–759.ADSCrossRefzbMATHGoogle Scholar
  35. Wooldridge, C.E., Wooten, D.C., and Amaro, A.J. (1971) The structure of jet turbulence producing noise. NASA contractor Rep n°126483.Google Scholar
  36. Zaman, K.B.M.Q., Reeder, M.F. and Samimy, M. (1994) Control of an axisymmetric jet using vortex generators. Phys.Fluids, 6(2), pp 778–794.ADSCrossRefGoogle Scholar
  37. Zaman, K.B.M.Q. and Hussain, A.K.M.F. (1980) Vortex pairing in a circular jet under controlled excitation, part 1, general jet response. J.Fluid Mech, 101, pp 449–491.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Gérald Urbin
    • 1
  • Olivier Métais
    • 2
  1. 1.CEA DRN/DTP/STR/LMTLGrenoble cedex 09France
  2. 2.LEGI/IMGGrenoble cedex 9France

Personalised recommendations