Les Analysis Of Turbulent Flow Past a Square Cylinder Using Various SGS Models

  • S. Murakami
  • S. Iizuka
  • A. Mochida
  • Y. Tominaga
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 5)


The turbulent vortex shedding flow past a two-dimensional square cylinder at Re=2.2×104 (test case LES2) was analyzed by Large Eddy Simulation using various dynamic subgrid-scale (SGS) models [1–5]. The types of SGS model used are as follows: the static type of conventional Smagorinsky model (S model, eqns.(l) and (2) in the Appendix (case 1)); the Dynamic Smagorinsky model (DS model, eqn.(6) in the Appendix (case 2)); the Dynamic Mixed model (DM model, eqn.(10) in the Appendix (case 3)); and the Lagrangian Dynamic Mixed model (LDM model, eqn.(16) in the Appendix (case 4)).


Large Eddy Simulation Cylinder Wall Stagger Grid Smagorinsky Model Dynamic Smagorinsky Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Germano, M., U. Piomelli, P. Moin and W.H. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids, A3, 1760 (1991).ADSCrossRefGoogle Scholar
  2. [2]
    Lilly, D.K., A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A4, 633 (1992).ADSCrossRefGoogle Scholar
  3. [3]
    Zang, Y., R.L. Street and J.R. Koseff, A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows, Phys. Fluids A5(12) pp 3186–3196 (1993).ADSCrossRefGoogle Scholar
  4. [4]
    Vreman, B., B. Geurts and H. Kuerten, On the formulation of the dynamic mixed subgrid-scale model, Phys. Fluids 6(12), pp.4057–4059 (1994).ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    Meneveau, C, T.S. Lund and W. Cabot, A lagrangian dynamic subgrid-scale model of turbulence, Proceedings of the Summer Program 1994, Center for Turbulence Research, pp.2746–2757 (1991).Google Scholar
  6. [6]
    LES workshop of Flows past Bluff Bodies, June 26–28 Rottach-Egern, Tegernsee, Germany, organized by W. Rodi and J.H. Ferziger (1995).Google Scholar
  7. [7]
    Lyn, D.A., Einav S., Rodi W. and Park J.H. (1995), A laser-Doppler velocimetry study of ensemble averaged characteristics of the turbulent near wake of a square cylinder, J. Fluid Mech. vol. 304, p.285 (1995).ADSCrossRefGoogle Scholar
  8. [8]
    Werner, H. and H. Wengle, Large-eddy simulation of turbulent flow over and around a cube in a plate channel, 8th Symp. on Turbulent Shear Flows 19–4 (1991).Google Scholar
  9. [9]
    Murakami, S., W. Rodi, A. Mochida and S. Sakamoto, Large eddy simulation of turbulent vortex shedding flow past 2D square cylinders, in: Proc. Symp. on Engineering Applications of large Eddy Simulations (FED-Vol.162). ASME p.113 (1991).Google Scholar
  10. [10]
    Rhie, C.M. and W.L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA Journal, vol. 21, No.11 (1983).Google Scholar
  11. [11]
    Ooka, R., S. Murakami and A. Mochida, Study on conservation property of kinetic energy of LES with colocated grid, submitted to International Journal of Numerical Method in Fluids.Google Scholar
  12. [12]
    Vickery, B.J., Fluctuating lift and drag on a long cylinder of square cross section in a smooth and a turbulent stream, J. Fluid Mech. 25, p.481 (1975).ADSCrossRefGoogle Scholar
  13. [13]
    Lee, B.E., The effect of turbulence on the surface pressure field of square prisms, J. Fluid Mech. 69, p.263 (1975).ADSCrossRefGoogle Scholar
  14. [14]
    Bardina, J., J.H. Ferziger and W.C. Reynolds, Improved Subgrid-Scale Models for Large-Eddy Simulation, AIAA paper-80 (1981).Google Scholar
  15. [15]
    Akselvoll, K., and P. Moin, Large eddy simulation of a backward facing step flow, Eng. Turbulence Modelling and Experiments 2 pp.303–313 (1993).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • S. Murakami
    • 1
  • S. Iizuka
    • 1
  • A. Mochida
    • 2
  • Y. Tominaga
    • 2
  1. 1.I.I.S., University of TokyoRoppongi, TokyoJapan
  2. 2.Niigata Institute of TechnologyKashiwazaki, NiigataJapan

Personalised recommendations