Autoignition of Nonpremixed Turbulent Mixtures: Partially Premixed Combustion

  • P. Domingo
  • L. Vervisch
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 5)


Autoignition of nonpremixed turbulent mixtures undergoing a compression is studied by using DNS. The temporal evolution of the mean amount of heat released during ignition is used to distinguish between different ignition regimes. In particular, nonuniform distribution of mixture fraction dissipation rate along the stoichiometric line contributes to the development of partially premixed ignition fronts, in which the triple flame structure is observed.


Heat Release Mixture Fraction Diffusion Flame Premix Flame Flame Spread 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dold, J. W. (1989). Flame propagation in a nonuniform mixture: analysis of a slowly varying triple flame. Comb, and Flame, 76:71–88.CrossRefGoogle Scholar
  2. Guichard, L., Vervisch, L., and Domingo, P. (1995). Two-dimensional weak shock-vortex interaction in a mixing zone. AIAA Journal, 33(10).Google Scholar
  3. Lele, S. K. (1992). Compact finite difference schemes with spectral like resolution. J. Comput. Phys., (103):16–42.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. Liñian, A. and Crespo, A. (1976). An asymptotic analysis of unsteady diffusion flames for large activation energies. Comb. Sci. Tech., 95(14).Google Scholar
  5. Liñán, A. (1994). Ignition and flame spread in laminar mixing layer. In Buckmaster, J., Jackson, T. L., and Kumar, A., editors, Combustion in High Speed Flows, page 461. Kluwer Academic Publishers.Google Scholar
  6. Liñán, A. and Williams, F. A. (1993). Fundamental aspects of combustion. Oxford university press.Google Scholar
  7. Poinsot, T., Candel, S., and Trouvé, A. (1995). Direct numerical simulation of premixed turbulent combustion. Prog. Energy Combust. Sci. submitted.Google Scholar
  8. Ruetsch, G. R., Vervisch, L., and Liñán, A. (1995). Effects of heat release on triple flames. Phys. of Fluids, 7(6):1447–1454.ADSCrossRefGoogle Scholar
  9. Thévenin, D. and Candel, S. (1995). Ignition dynamics of a diffusion flame rolled up in a vortex. Phys. Fluids, 2(7):434–445.ADSCrossRefGoogle Scholar
  10. Veynante, D., Vervisch, L., Poinsot, T., A. Liñán, and Ruetsch, G. (1994). Triple flame structure and diffusion flame stabilization. In Moin, P. and Reynolds, W., editors, Studying turbulence using numerical databases — V, pages 55–73. Center for Turbulence Research.Google Scholar
  11. Bray, K. and Peters, N. (1994). Laminar flamelets in turbulent flames. In Libby, P. and Williams, F., editors, Turbulent Reacting Flows, pages 63–113. Academic Press London.Google Scholar
  12. Domingo, P. and Vervisch, L. (1996). Triple flames and partially premixed combustion in autoignition of nonpremixed mixtures. In The Combustion Institute, 26th Symp. on Comb.Google Scholar
  13. Kioni, P. N., B. Rogg, Bray, K. N. C., and Liñán, A. (1993). Flame spread in laminar mixing layers: the triple flame. Comb. and Flame, 95:276.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • P. Domingo
    • 1
  • L. Vervisch
    • 1
  1. 1.LMFN-INSA de Rouen URA - CNRS 230 — CORIAMont St. Aignan CédexFrance

Personalised recommendations