Amplified Frequencies in the Proximal Region of a Circular Jet

  • M. Olsson
  • L. Fuchs
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 5)


Earlier Large Eddy Simulations (LES) of the proximal region of the spatially developing jet, using a dynamic subgrid scale (SGS) model, showed that it was possible to capture the transition from laminar to turbulent flow, Olsson and Fuchs (1996). This work is focused on the amplification of certain frequencies in the proximal region of the jet. Frequency amplification is studied for different inlet disturbances and Reynolds numbers using a dynamic SGS-model. The disturbances correspond to perturbations used in experimental studies by Crow and Champagne (1971) and Longmire and Eaton (1992). The results of the dynamic models are compared with the results of a simulation without any explicit SGS-model. The numerical accuracy is studied using LES with different spatial resolutions. The validity of the LES assumption is assured by resolving the Taylor micro-length scales which implies spatial resolution within the inertial sub-range. The dynamic SGS-model employs artificial bounds of the SGS-model parameter instead of the commonly used spatial averaging. This is done to exclude unphysical values of the model parameter and to enhance numerical stability.


Reynolds Number Fundamental Frequency Large Eddy Simulation Vortex Ring Strouhal Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batchelor, G. K. & Gill, A. E. 1962. Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14, 529.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. Bradshaw, P., Ferriss, D. H. & Johnson, R. F. 1964. Turbulence in the noise-producing region of a circular jet. J. Fluid Mech. 19, 591.ADSCrossRefzbMATHGoogle Scholar
  3. Brandt, A. 1977. Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333.CrossRefzbMATHGoogle Scholar
  4. Corrsin, S. & Uberoi, M. S. 1950. Further experiments on the flow and heat transfer in a heated turbulent air jet. Technical Report Report 998, NACA.Google Scholar
  5. Crow, S. C. & Champagne, F. H. 1971. Orderly structure in jet turbulence. J. Fluid Mech. 48, 547.ADSCrossRefGoogle Scholar
  6. Fuchs, L. 1986. A local mesh-refinement technique for incompressible flows. Comput. Fluids. 14, 69.ADSCrossRefzbMATHGoogle Scholar
  7. Germano, M., Piomelli, U., Moin, P. & Cabot, W. 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A. 3, 1790.Google Scholar
  8. Lilly, D. K. 1992. A proposed modification of the germano subgrid-scale closure method. Phys. Fluids A. 4, 633.ADSCrossRefGoogle Scholar
  9. Longmire, E. K. & Eaton, J. K. 1992. Structure of a particle-laden round jet. J. Fluid Mech. 236, 217.ADSCrossRefGoogle Scholar
  10. Michalke, A. 1971. Instabilität eines kompressiblen runden freistrahls unter berücksichtigung des einflusses der strahlgrenzschichtdicke. Z. Flugwiss. 19, 319.zbMATHGoogle Scholar
  11. Olsson, M. & Fuchs, L. 1996. Large eddy simulation of the proximal region of a spatially developing circular jet. Phys. Fluids. 8, 2125.ADSCrossRefGoogle Scholar
  12. Rai, M. M. & Moin, P. 1991. Direct simulations of turbulent flow using finite-difference schemes. J. Comput. Phys. 96, 15.ADSCrossRefzbMATHGoogle Scholar
  13. Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99.ADSCrossRefGoogle Scholar
  14. Wygnanski, I. & Fiedler, H. 1969. Some measurements in the self-preserving jet. J. Fluid Mech. 38, 577.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • M. Olsson
    • 1
  • L. Fuchs
    • 1
  1. 1.Department of MechanicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations