Advertisement

On the Extension of the Dynamic Modelling Procedure to Turbulent Reacting Flows

  • M. Germano
  • A. Maffio
  • S. Sello
  • G. Mariotti
Conference paper
  • 328 Downloads
Part of the ERCOFTAC Series book series (ERCO, volume 5)

Abstract

The dynamic modelling procedures are based on the use of the information extracted at a filtered level. These procedures have been applied to the subgrid scale stresses in incompressible flow, but their extension to reacting flows poses a lot of problems. In this paper a preliminary study of the dynamic modelling procedure applied to the turbulent transport and the turbulent production of a scalar has been performed.

Keywords

Large Eddy Simulation Eddy Diffusivity Turbulent Transport Damkohler Number Turbulent Shear Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreola M., Maffio A., Sello S., Germano M., & Mariotti G., 1995: LES of a temporal mixing layer. 10th Symposium on Turbulent Shear Flows, The Pennsylvania State University, August 14–16, 1995.Google Scholar
  2. Banerjee S., Brusa L., Roy C.M., & Za S., 1993: A hybrid semianalytic spectral method for direct numerical simulation of turbulent flows. Proc. 5th Int. Symp. on Refined Flow Modelling and Turbulence Measurements, Paris, September 7–10, 1993.Google Scholar
  3. Brusa L., Maffio A., & Sello S., 1994: Nuova versione del programma MILCH per la simulazione di strati di mescolamento 3-D turbolenti reagenti chimicamente. R.T. CISE-SMA 94–14.Google Scholar
  4. Chollet J.P., Si Ameur M., & Vallcorba M.R., 1994: Direct and Large Eddy Simulations of chemically reacting flows. Direct and Large Eddy Simulation I, Kluwer, Dordrecht, 375–385.CrossRefGoogle Scholar
  5. Cook A.W.,& Riley J.J., 1994: A subgrid model for equilibrium chemistry in turbulent flows. Phys.Fluids 6, 2868–2870.ADSCrossRefGoogle Scholar
  6. Germano M., 1992: Turbulence: the filtering approach. J.Fluid Mech. bf 238, 325–336.Google Scholar
  7. Germano M., 1996: A statistical formulation of the dynamic model. Phys. Fluids 8, 565–570.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. Moin P., Squires K., Cabot W., & Lee S., 1991: A dynamic subgrid scale model for compressible turbulence and scalar transport, Phys.Fluids A3, 2746–2757.Google Scholar
  9. Papoulis A., 1965: Probability, Random Variables and Stochastic Processes. McGraw-HillGoogle Scholar
  10. Park K., Metcalfe R.W., & Hussain F., 1994: Role of coherent structures in an isothermally reacting mixing layer. Phys.Fluids 6, 885–902.ADSCrossRefzbMATHGoogle Scholar
  11. Pope S.B., 1983: Consistent modelling of scalar in turbulent flows. Phys. Fluids 26, 404–408.ADSCrossRefzbMATHGoogle Scholar
  12. Shih T.H., Lumley J.L., & Chen J.Y., 1990: Second order modeling of a passive scalar in a turbulent shear flow. AIAA Journal 28, 610–617.ADSCrossRefzbMATHGoogle Scholar
  13. Tennekes H., & Lumley J.L. 1972: A first course in turbulence. MIT Press, Cambridge MA.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • M. Germano
    • 1
  • A. Maffio
    • 2
  • S. Sello
    • 2
  • G. Mariotti
    • 3
  1. 1.Dip. di Ing. Aeronautica e SpazialePolitecnico di TorinoTorinoItaly
  2. 2.CISE SpA Divisione Sistemi e ModelliMilanoItaly
  3. 3.ENEL SpA Centro Ricerca TermicaPisaItaly

Personalised recommendations