Advertisement

Influence of a Spanwise Rotation Upon the Coherent-Structure Dynamics in a Turbulent Channel Flow

  • E. Lamballais
  • O. Métais
  • M. Lesieur
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 5)

Abstract

We introduce a spectral-dynamic model, which is based on Kraichnan’s spectral eddy-viscosity (Kraichnan, 1976) with an arbitrary spectral exponent m for the kinetic-energy spectrum at the cutoff. This model is validated for LES of a turbulent channel flow at low and high Reynolds numbers. Afterwards we look at the influence of a rotation Ω of spanwise axis at a high rotation rate. We find that the following results, concerning the anticyclonic side of the channel and compared with the non-rotating case : a) the low-and high-speed streaks are reduced ; b) the longitudinal vorticity is increased ; c) the mean velocity profile is linear and equal to 2Ω; d) the organized vortices are more coherent, and preferentially inclined at 25° (instead of 45°) to the wall.

Keywords

Direct Numerical Simulation High Reynolds Number Coherent Motion Turbulent Channel Flow Hairpin Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonia, R. A., Teitel, M., Kim, J., & Browne, L. W. B. 1992. Low-Reynolds-number effects in a fully developed turbulent channel flow. J. Fluid Mech., 236, 579–605.ADSCrossRefGoogle Scholar
  2. Chollet, J. P. 1985. Two-point closure used for a subgrid scale model in large eddy simulations. Pages 62–72 of: Bradbury, L. J. S. (ed), Turbulent Shear Flows. Springer.Google Scholar
  3. Chollet, J. P., & Lesieur, M. 1981. Parameterization of small scales of the three-dimensional isotropic turbulence utilizing spectral closures. J. Atmos. Sci., 38, 2747–2757.ADSCrossRefGoogle Scholar
  4. Dean, R. B. 1978. Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectanguler Duct Flow. J. Fluids Engine., 100, 215–223.CrossRefGoogle Scholar
  5. Johnston, J. P., Halleen, R. M., & Lezius, D. K. 1972. Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. J. Fluid Mech., 56, 533–557.ADSCrossRefGoogle Scholar
  6. Kim, J. 1983. The effect of rotation on turbulence structure. Pages 6.14–6.19 of: Proc. 4th Symp. on Turbulent Shear Flows.Google Scholar
  7. Kraichnan, R. H. 1976. Eddy viscosity in two and three dimensions. J. Atmos. Sci., 33, 1521–1536.ADSCrossRefGoogle Scholar
  8. Kristoffersen, R., & Andersson, H. I. 1993. Direct simulations of low-Reynolds-number turbulent flow in rotating channel. J. Fluid Mech., 256, 163–197.ADSCrossRefzbMATHGoogle Scholar
  9. Lamballais, E., Lesieur, M., & Métais, O. 1996a. Effects of spanwise rotation on the vorticity stretching in transitional and turbulent channel flow. Int. J. Heat and Fluid Flow, 17(3), 324–332.CrossRefGoogle Scholar
  10. Lamballais, E., Lesieur, M., & Métais, O. 1996b. Influence of a solid-body rotation upon coherent vortices in a channel. C. R. Acad. Sci., 95–101. Série II b.Google Scholar
  11. Métais, O., & Lesieur, M. 1992. Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech., 239, 157–194.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. Métais, O., Flores, C., Yanase, S., Riley, J. J., & Lesieur, M. 1995. Rotating free shear flows Part 2: Numerical simulations. J. Fluid Mech., 293, 41–80.CrossRefGoogle Scholar
  13. Piomelli, U. 1993. High Reynolds number calculations using the dynamic ubgrid-scale stress model. Phys. Fluids A, 5, 1484–1490.ADSCrossRefGoogle Scholar
  14. Piomelli, U., & Liu, J. 1995. Large-eddy simulation of rotating channel flows using a localized dynamic model. Phys. Fluids A, 7(4), 839–848.ADSCrossRefzbMATHGoogle Scholar
  15. Tafti, D. K., & Vanka, S. P. 1991. A numerical study of the effects of spanwise rotation on turbulent channel flow. Phys. Fluids A, 3(4), 642–656.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • E. Lamballais
    • 1
  • O. Métais
    • 1
  • M. Lesieur
    • 2
  1. 1.LEGI-IMG URA CNRS 1509Institut National Polytechnique de GrenobleFrance
  2. 2.Université Joseph Fourier GrenobleGrenoble Cedex 9France

Personalised recommendations