Large Eddy Simulations of Stratified Atmospheric Flows Within a Deep Valley

  • C. Guilbaud
  • J. P. Chollet
  • S. Anquetin
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 5)


Large Eddy Simulations are used to compute atmospheric thermal circulations in complex terrain. The subgrid models are based either on the Smagorinsky formulation or on a subgrid kinetic energy equation. They are tested in a convective boundary layer and then used in a comparison with available measurements. The formulation with the subgrid kinetic energy gives as good results as the Smagorinsky formulation, but with more information available from the subgrid energy. The large eddy simulation of the atmosphere in a deep valley allows reproduction of the diurnal cycle of thermal winds and the progression of the inversion layer.


Planetary Boundary Layer Convective Boundary Layer Subgrid Scale Deep Valley Large Scale Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Byun, D. W., 1990: On the analytical solutions of flux-profile relationships for the atmospheric surface layer. J. Appl. Met. 25, 1205–1212.Google Scholar
  2. Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layer. J. Atmos. Sci. 29, 91–115.ADSCrossRefGoogle Scholar
  3. Deardorff, J. W., 1974: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-layer Met. 7, 81–106.ADSGoogle Scholar
  4. DeardorfF, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Phys. Fluids. A7, 1760–1771.Google Scholar
  5. Gal-Chen, T., & R. C. J. Sommerville, 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys. 17, 209–228.ADSCrossRefzbMATHGoogle Scholar
  6. Guilbaud, C., 1996, Etude des inversions thermiques: application aux écoulements atmosphériques dans des vallées encaissées, thèse de l’Université Joseph Fourier, GrenobleGoogle Scholar
  7. Lilly, D. K., 1967: The representation of small-scales turbulence in numerical simulation experiments. In Proc. IBM Sci. Comput. Symp. on Environmental Sci., Nov. 14–16, 1966, Thomas J. Watson Res. Center, Yorktown Heights, N.Y., IBM Form 320-1951, pp. 195–210.Google Scholar
  8. Louis, J. F., M. Tiedke, &, J. F. Geleyn, 1981: A short history of the operational PBL parametrization of the ECMWF. Workshop on planetary boundary layer parametrization, November 1981, ECMWF, Reading, England. 59–79.Google Scholar
  9. Moeng, C.-H., & J. C. Wyngaard, 1988: Spectral analysis of large-eddy-simulation of the convective boundary layer. J. Atmos. Sci. 45, 3573–3587.ADSCrossRefGoogle Scholar
  10. Nieuwstadt, F. T. M., P. J. Mason, C.-H. Moeng, & U. Schumann 1993: Large-eddy-simulation of the convective boundary layer: A comparison of four computer codes. Turbulent Shear Flows 8, Durst et al, Eds. Springer-Verlag. 431 pp.Google Scholar
  11. Noilhan, J., & S. Planton, 1989: A simple parametrization of the land surface processes for meteorological models. Mon. Wea. Rev. 117, 536–549.ADSCrossRefGoogle Scholar
  12. Schmidt, H., & U. Schumann, 1989: Coherent structure of the convective boundary layer derived from large-eddy-simulations. J. Fluid. Mech. 200, 511–562.ADSCrossRefzbMATHGoogle Scholar
  13. Smagorinsky, J., 1963: General simulation experiments with the primitive equations. Mon. Wea. Rev. 91, 99–164.ADSCrossRefGoogle Scholar
  14. Stull, R. B., 1988: An introduction to Boundary layer Meteorology. Kluwer Academic Publishers. 666pp.Google Scholar
  15. Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, & K. Brewster, 1995: Advanced regional prediction system (A.R.P.S.), version 4.0, user’s guide. Center for analysis and prediction of storms. 374 pp.Google Scholar
  16. Yamada, T., & G. Mellor, 1975: A simulation of the Wangara atmospheric boundary layer data. J. Atmos. Sci. 32, 2309–2329.ADSCrossRefGoogle Scholar
  17. Young, E.L., 1988: Turbulence structure of the convective boundary layer. Part I: Variability of normalized turbulenc statistics. J. Atmos. Sci. 45, 719–726.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • C. Guilbaud
    • 1
  • J. P. Chollet
    • 1
  • S. Anquetin
    • 1
  1. 1.Laboratoire des Ecoulements Géophysiques et IndustrielsUJF-INPG-CNRSGRENOBLE cedex 9France

Personalised recommendations