Skip to main content

Large Eddy Simulations of Stratified Atmospheric Flows Within a Deep Valley

  • Conference paper
Book cover Direct and Large-Eddy Simulation II

Part of the book series: ERCOFTAC Series ((ERCO,volume 5))

Abstract

Large Eddy Simulations are used to compute atmospheric thermal circulations in complex terrain. The subgrid models are based either on the Smagorinsky formulation or on a subgrid kinetic energy equation. They are tested in a convective boundary layer and then used in a comparison with available measurements. The formulation with the subgrid kinetic energy gives as good results as the Smagorinsky formulation, but with more information available from the subgrid energy. The large eddy simulation of the atmosphere in a deep valley allows reproduction of the diurnal cycle of thermal winds and the progression of the inversion layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Byun, D. W., 1990: On the analytical solutions of flux-profile relationships for the atmospheric surface layer. J. Appl. Met. 25, 1205–1212.

    Google Scholar 

  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layer. J. Atmos. Sci. 29, 91–115.

    Article  ADS  Google Scholar 

  • Deardorff, J. W., 1974: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-layer Met. 7, 81–106.

    ADS  Google Scholar 

  • DeardorfF, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Phys. Fluids. A7, 1760–1771.

    Google Scholar 

  • Gal-Chen, T., & R. C. J. Sommerville, 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys. 17, 209–228.

    Article  ADS  MATH  Google Scholar 

  • Guilbaud, C., 1996, Etude des inversions thermiques: application aux écoulements atmosphériques dans des vallées encaissées, thèse de l’Université Joseph Fourier, Grenoble

    Google Scholar 

  • Lilly, D. K., 1967: The representation of small-scales turbulence in numerical simulation experiments. In Proc. IBM Sci. Comput. Symp. on Environmental Sci., Nov. 14–16, 1966, Thomas J. Watson Res. Center, Yorktown Heights, N.Y., IBM Form 320-1951, pp. 195–210.

    Google Scholar 

  • Louis, J. F., M. Tiedke, &, J. F. Geleyn, 1981: A short history of the operational PBL parametrization of the ECMWF. Workshop on planetary boundary layer parametrization, November 1981, ECMWF, Reading, England. 59–79.

    Google Scholar 

  • Moeng, C.-H., & J. C. Wyngaard, 1988: Spectral analysis of large-eddy-simulation of the convective boundary layer. J. Atmos. Sci. 45, 3573–3587.

    Article  ADS  Google Scholar 

  • Nieuwstadt, F. T. M., P. J. Mason, C.-H. Moeng, & U. Schumann 1993: Large-eddy-simulation of the convective boundary layer: A comparison of four computer codes. Turbulent Shear Flows 8, Durst et al, Eds. Springer-Verlag. 431 pp.

    Google Scholar 

  • Noilhan, J., & S. Planton, 1989: A simple parametrization of the land surface processes for meteorological models. Mon. Wea. Rev. 117, 536–549.

    Article  ADS  Google Scholar 

  • Schmidt, H., & U. Schumann, 1989: Coherent structure of the convective boundary layer derived from large-eddy-simulations. J. Fluid. Mech. 200, 511–562.

    Article  ADS  MATH  Google Scholar 

  • Smagorinsky, J., 1963: General simulation experiments with the primitive equations. Mon. Wea. Rev. 91, 99–164.

    Article  ADS  Google Scholar 

  • Stull, R. B., 1988: An introduction to Boundary layer Meteorology. Kluwer Academic Publishers. 666pp.

    Google Scholar 

  • Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, & K. Brewster, 1995: Advanced regional prediction system (A.R.P.S.), version 4.0, user’s guide. Center for analysis and prediction of storms. 374 pp.

    Google Scholar 

  • Yamada, T., & G. Mellor, 1975: A simulation of the Wangara atmospheric boundary layer data. J. Atmos. Sci. 32, 2309–2329.

    Article  ADS  Google Scholar 

  • Young, E.L., 1988: Turbulence structure of the convective boundary layer. Part I: Variability of normalized turbulenc statistics. J. Atmos. Sci. 45, 719–726.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Guilbaud, C., Chollet, J.P., Anquetin, S. (1997). Large Eddy Simulations of Stratified Atmospheric Flows Within a Deep Valley. In: Chollet, JP., Voke, P.R., Kleiser, L. (eds) Direct and Large-Eddy Simulation II. ERCOFTAC Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5624-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5624-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6370-8

  • Online ISBN: 978-94-011-5624-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics