Advertisement

Empirical Surface Gravities

from spectra and from binaries
  • P. F. L. Maxted
Conference paper
Part of the International Astronomical Union / Union Astronomique Internationale book series (IAUS, volume 189)

Abstract

The surface gravity of a star (log g) is a fundamental parameter in models of stellar atmospheres. Given suitable spectra, log g can be determined from such models with an accuracy of 0.ldex, at best. Detached eclipsing binary stars can provide values of log g an order of magnitude more accurate than this, though for a more limited range of stars. Naturally, less accurate surface gravities can be obtained for a wider range of eclipsing binary stars.

These facts are well known, so in this short review I will outline the types of stars to which the two methods have be usefully applied and might be applied in the near future. This naturally leads to the question of where the two ranges overlap and the comparison of results from the two methods. Techniques for allowing this comparison to made directly will be described. Surface gravities derived from winds in hot stars and (indirectly) from gravitational redshifts in white dwarf stars will also be covered briefly.

Keywords

Surface Gravity Binary Star Stellar Atmosphere Accurate Parameter Gravitational Redshift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagnuolo W.G. and Gies D.R., (1991) Astroph. J. 376 pp. 266–271ADSCrossRefGoogle Scholar
  2. Balona L.A. (1985) Mon. Not. R. Astron. Soc. 211, pp. 973–980ADSGoogle Scholar
  3. Bonnell J.T. and Bell R.A., (1993) Mon. Not. R. Astron. Soc. 264, pp. 334–344ADSGoogle Scholar
  4. Clayton G.C., (1996) Pub. Astron. Soc. Pacific 108, pp. 401–403ADSCrossRefGoogle Scholar
  5. Edvardsson B. (1988) Astron. & Astrophys. 190, pp. 148–166ADSGoogle Scholar
  6. Gustafsson B. (1989) Ann. Rev. Astron. Astrophys. 27, pp. 701–756ADSCrossRefGoogle Scholar
  7. Hadrava P., (1995) Astron. Astrophys. Suppl. Ser. 114, pp. 393–396ADSGoogle Scholar
  8. Herrero A., Kudritzki R.P., Vilchez D., Kunze K., Butler K. and Haser S. (1992) Ann. Rev. Astron. Astrophys. 261, pp. 209–234ADSGoogle Scholar
  9. Kudritzki R.P. and Hummer D.G.,(1990) Ann. Rev. Astron. Astrophys. 28, pp. 303–345ADSCrossRefGoogle Scholar
  10. Marsh T.R., Dillon V.S. and Duck S.R., (1995) Mon. Not. R. Astron. Soc. 275, pp. 89–99ADSGoogle Scholar
  11. Metcalfe T.S., Mathieu R.D., Latham D.W. and Torres G. (1996) Astroph. J. 456, pp. 356–364ADSCrossRefGoogle Scholar
  12. Moon T.T. and Dworetsky M.M., (1985) Mon. Not. R. Astron. Soc. 217, pp. 305–316ADSGoogle Scholar
  13. Reid I.N. (1996) Astron. J 111, pp. 2000–2016ADSCrossRefGoogle Scholar
  14. Relyea L.J. and Kurucz R.L., (1978) Astroph. J. Suppl. 37, pp. 45ADSCrossRefGoogle Scholar
  15. Simon K.P., Sturm E. and Fiedler A. (1994) Astron. & Astrophys. 292, pp. 507–518ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • P. F. L. Maxted
    • 1
  1. 1.University of SouthamptonUK

Personalised recommendations