Skip to main content

Growth Kinetics of Cubic Boron Nitride Films and Composites

  • Chapter
Diamond Based Composites

Part of the book series: NATO ASI Series ((ASHT,volume 38))

Abstract

We have developed a novel plasma-assisted physical deposition process for the growth of cubic boron nitride films. Our approach recognizes the central role of kinetics in the formation of this metastable phase and utilizes high substrate temperatures, a low flux of boron, and energetic nitrogen ions from a compact ECR source. We have been able to reduce the ion-energy needed to form the cubic phase to substantially below 100 eV with substantial improvements in the film crystallinity and orientation and an associated reduction in the film stress. Using this method we have demonstrated the growth of cubic BN films on silicon to thicknesses in excess of 1.9 µm. In-situ RHEED measurements show that the deposition process is optimized in a narrow range ion energies (ΔE ~ 15 eV) controlled by a do substrate bias potential. The optimum substrate bias potential is inversely proportional to the nitrogen ion flux. Additional insight into the evolution of thin-film stress during growth is provided by polarized FTIR spectroscopy measurements which also shed light on the initial nucleation mechanism of the cubic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wide Band Gap Semiconductors, eds. T. D. Moustakas, J I Pankove, and Y. Hamakawa, MRS Symposium Proceedings 242, Pittsburgh, PA (1992).

    Google Scholar 

  2. S. State and H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992).

    Article  Google Scholar 

  3. Silicon Carbide and Related Materials, eds. M. G. Spencer, R. P. Devaty, J. A. Edmond, M. Asif Khan, R. Kaplan, and M. Rahman, Institute of Physics Conference Series 137, (1994).

    Google Scholar 

  4. Diamond, SiC and Nitride Wide-bandgap Semiconductors, eds. C. H. Carter, G. Gildenblat, S. Nakamura, and R. J. Nemanich, MRS Symposium Proceedings 339, Pittsburg, PA (1994).

    Google Scholar 

  5. III-Nitride, SiC, and Diamond Materials for Electronic Devices, eds. D. K. Gaskill, C. Brandt, and R. J. Nemanich, MRS Symposium Proceedings 423, Pittsburgh, PA (1996).

    Google Scholar 

  6. G.L. Doll, A.K. Ballal, L. Salamanca-Riba, C.A. Taylor, S. Kidner, and R. Clarke, in Beam Processing of Advanced Materials, J. Singh, S.M. Copley, eds., Proc. Matls. Soc., pp. 419–434 (1993).

    Google Scholar 

  7. Kiyoku, Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996).

    Article  Google Scholar 

  8. H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Bums, J. Appl. Phys. 76, 1363 (1994).

    Article  Google Scholar 

  9. R. H. Wentorf, Jr., J. Chem. Phys. 36, 1990 (1962).

    Article  CAS  Google Scholar 

  10. O. Mishima, J. Tanaka, S. Yamaoka, and O. Fukunaga, Science 238, 181 (1987).

    Article  CAS  Google Scholar 

  11. O. Mishima, K. Era, J. Tanaka, and S. Yamaoka, Appl. Phys. Lett. 53, 962 (1988).

    Article  CAS  Google Scholar 

  12. Properties of Group III Nitrides, EMIS Datareviews Series No.11, edited by James H. Edgar, (INSPEC, London, (1994).

    Google Scholar 

  13. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology-Semiconductors: Physics of Group II’ and 111-Y Compounds, Volume 17, Subvolume a, edited by O. Madelung, (Springer-Verlag, Berlin, 1982), pp. 148–149.

    Google Scholar 

  14. W. Balmain, Phil. Mag. 21, 170 (1842).

    Google Scholar 

  15. S. Larach and R. E. Shrader, Phys. Rev. 104, 68 (1956).

    Article  CAS  Google Scholar 

  16. J. Cazaux, C. R. Acad. Sci. B 270, 700 (1970).

    CAS  Google Scholar 

  17. R. Vilanove, C. R. Acad. Sci. B 272, 1066 (1972).

    Google Scholar 

  18. J. Zupan and D. Kolar, J. Phys. C 5, 3097 (1972).

    Article  CAS  Google Scholar 

  19. W. Baronian, Mater. Res. Bull. 7, 119 (1972).

    Article  CAS  Google Scholar 

  20. A. Zunger, A. Katzir, and A. Halperin, Phys. Rev. B 13, 5560 (1976).

    Article  CAS  Google Scholar 

  21. R. Mamy, J. Thomas, G. Jezequel, and J. C. Lemonnier, J. Phys. (Paris) Lett. 42, 473 (1981).

    Article  CAS  Google Scholar 

  22. V. A. Fomichev, Fiz. Tverd. Tela (Leningrad) 13, 907 (1971). [Sov. Phys.- Solid State 13, 754 (1971)].

    Google Scholar 

  23. E. Tegeler, N. Kosuch, G. Wiech, and A. Faessler, Phys. Status Solidi B 91, 223 (1979).

    Article  CAS  Google Scholar 

  24. D. M. Hoffman, G. L. Doll, and P. C. Eklund, Phys. Rev. B 30, 6051 (1984).

    Article  CAS  Google Scholar 

  25. A. I. Lukomskii, V. B. Shipilo, and L. M. Gameza, Thur. Prikl. Spektr. 57, 100 (1992).

    CAS  Google Scholar 

  26. E. Doni and G. P. Parravicini, Nuovo Cimento 64B, 117 (1969).

    Google Scholar 

  27. M. S. Nakhmanson and V. P. Smirnov, Fiz. Tverd. Tela (Leningrad) 13, 905 (1971).

    CAS  Google Scholar 

  28. J. Zupan, Phys. Rev. B 6, 2477 (1972).

    Article  CAS  Google Scholar 

  29. J. Robertson, Phys. Rev. B 29, 2131 (1984).

    Article  CAS  Google Scholar 

  30. R. Taylor and C. A. Coulson, Proc. Phys. Soc. London, Sect. A 65, 834 (1952).

    Article  Google Scholar 

  31. A. Zunger, J. Phys. C 7, 76 (1974); 7, 96 (1974).

    Google Scholar 

  32. R. Dovesi, C. Pisani, and C. Roetti, Int. J. Quantum Chem. 17, 517 (1980).32 R. H.

    Article  CAS  Google Scholar 

  33. Wentorf, Jr., J. Chem. Phys. 26, 956 (1957).

    CAS  Google Scholar 

  34. L. Vel, G. Demazeau, and J. Etoumeau, Mater. Sci. Eng B10, 149 (1991).

    Article  CAS  Google Scholar 

  35. H. Herchen and M. A. Cappelli, Phys. Rev. B 47, 14193 (1993).

    Article  CAS  Google Scholar 

  36. P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, Phys. Rev. 155, 1039 (1967).

    Article  CAS  Google Scholar 

  37. R. M. Chrenko, Solid State Commun. 14, 511 (1974).

    Article  CAS  Google Scholar 

  38. V. A. Fomichev and M. A. Ruttish, J. Phys. Chem. Sol. 29, 1015 (1968).

    Article  CAS  Google Scholar 

  39. N. Miyata, K. Moriki, O. Mishima, M. Fujisawa, and T. Hattori, Phys. Rev. B 40, 12028 (1989).

    Article  CAS  Google Scholar 

  40. L. Kleinman and J, C. Phillips, Phys. Rev. 117, 460 (1960).

    Article  CAS  Google Scholar 

  41. F. Bassani and M. Yoshimine, Phys. Rev. 130, 20 (1963).

    Article  CAS  Google Scholar 

  42. D. R. Wiff and R. Keowa, J, Chem. Phys. 47, 3113 (1967).

    Article  CAS  Google Scholar 

  43. L. A. Hamstreet Jr. and C. Y. Fong, Phys. Rev. B 6, 1464 (1972).

    Article  Google Scholar 

  44. H. C. Hwang and J. Henkel, Phys. Rev. B 17, 4100 (1978).

    Article  CAS  Google Scholar 

  45. Y. F. Tsay, A. Vaidyanathan, and S. S. Mitra, Phys. Rev. B 19, 5422 (1979).

    Article  CAS  Google Scholar 

  46. C. Prasad and J. D. Dubey, Proc. Nuci. Phys. Solid State, 386 (1982).

    Google Scholar 

  47. C. Prasad and J. D. Dubey, Phys. Status Solidi B 125, 629 (1984).

    Article  CAS  Google Scholar 

  48. M. Z. Huang and W. Y. Ching, J. Phys. Chem. Solids 46, 977 (1985).

    Article  CAS  Google Scholar 

  49. R. M. Wentzcovitch, K. J. Chang, and M. L. Cohen, Phys. Rev. B 34(2), 1071 (1986).

    Article  CAS  Google Scholar 

  50. K. T. Park, T. Terakura, and H. Hamada, J. Phys. C: Solid State Phys. 20, 1241 (1987).

    Article  CAS  Google Scholar 

  51. A. Zunger and A. J. Freeman, Phys. Rev. B 17, 2030 (1978).

    Article  CAS  Google Scholar 

  52. R. Dovesi, C. Pisani, C. Roetti, and P. Dellarole, Phys. Rev. B 24, 4170 (1981).

    Article  CAS  Google Scholar 

  53. P. E. Van Camp, V. E. Doren, and J. T. Devreese, Phys. Status Solidi B 146, 573 (1988).

    Article  Google Scholar 

  54. A. Onodera, M. Nakatani, M. Kobayashi, Y. Nisida, and O. Mishima, Phys. Rev. B 48, 2777 (1993).

    Article  CAS  Google Scholar 

  55. F. P. Bundy and R. H. Wentorf Jr., J. Chem. Phys. 38, 1144 (1963).

    Article  CAS  Google Scholar 

  56. T. Ishii, T. Sato, Y. Sekikawa, M. Iwata, J. Cryst. Growth 52, 285 (1981).

    Article  CAS  Google Scholar 

  57. M. Sokolowski, J. Cryst. Growth 46, 136 (1979).

    Article  CAS  Google Scholar 

  58. S. P. S. Arya and A. D’Amico, Thin Solid Films 157, 267 (1988).

    Article  CAS  Google Scholar 

  59. J. J. Pouch and S. A. Alterovitz (eds.), Synthesis and Properties of Boron Nitride, Materials Science Forum, Vols. 54 and 55, (Trans Tech Publications, Brookfield, NY, 1990).

    Google Scholar 

  60. S. Fahy, University College Cork, Ireland, private communication (to be published).

    Google Scholar 

  61. C. A. Anderson and J. R. Hinthome, Science 175, 853 (1972).

    Article  Google Scholar 

  62. A. Benninghoven and A. Mueller, Phys. Lett. A 40, 169 (1972).

    Article  CAS  Google Scholar 

  63. H. W. Werner, Surf. Sci. 47, 301 (1975).

    Article  CAS  Google Scholar 

  64. J. Comas and C. B. Cooper, J. Appl. Phys. 38, 2956 (1967).

    Article  CAS  Google Scholar 

  65. A. B. Campbell and C. B. Cooper, J. Appl. Phys. 43, 863 (1972).

    Article  CAS  Google Scholar 

  66. B. J. Garrison, N. Winograd, and D. E. Harrison, J. Vac. Sci. Technol. 16, 789 (1979).

    Article  CAS  Google Scholar 

  67. J.E. Greene, in CRC Critical Reviews of Solid State and Materials Science 11, issues 1 and 2 1984.

    Google Scholar 

  68. J. M. E. Harper, J. J. Cuomo, R. J. Cambino, and H. R. Kaufman, in Ion Bombardment of Surfaces, eds., O. Auciello and R. Kelly (Elsevier, Amsterdam, 1984).

    Google Scholar 

  69. J. A. Thornton and D. W. Hoffman, J. Vac. Sci. Technol. 18, 203 (1981).

    Article  CAS  Google Scholar 

  70. A. Pan and J. E. Greene, Thin Solid Films 78, 25 (1981).

    Article  CAS  Google Scholar 

  71. T. C. Huang, G. Lim, F. Panniagiani, and E. Kay, J. Vac. Sci. Technol. A3, 216 (1985).

    Google Scholar 

  72. D. Henderson, M. H. Brodsky, and P. Chaudhari, Appl. Phys. Lett. 25, 641 (1974).

    Article  CAS  Google Scholar 

  73. A. G. Dirks and H. J. Leamy, Thin Solid Films 47, 219 (1977).

    Article  CAS  Google Scholar 

  74. L. Hultman, U. Helmersson, S. A. Barnett, J. -E. Sundgren, and J. E. Greene, J. Appl. Phys. 61, 552 (1987).

    Article  CAS  Google Scholar 

  75. Marinov, Thin Solid Films 46, 267 (1977).

    Article  CAS  Google Scholar 

  76. T. Narusawa, S. Shimizu, and S. Komiya, J. Vac. Sci. Technol. 16, 366 (1979).

    Article  CAS  Google Scholar 

  77. K. Yagi, S. Tamura, and K. Tokuyama, Jap. J. Appl. Phys. 16, 245 (1977).

    Article  CAS  Google Scholar 

  78. K. Tok-uyama, K. Yagi, K. Miyaki, M. Yamura, N. Natsuaki, and S. Tachi, Nucl. Instr. and Meth. 182/183, 241 (1981).

    Article  Google Scholar 

  79. Kimball Physics Inc., 311 Kimball Hill Road, Wilton, NH 03086–9742.

    Google Scholar 

  80. Technical data, Astex Compact ECR Source, Applied Science and Technology Inc., Woburn MA.

    Google Scholar 

  81. The original design of the substrate heater is credited to Ray Tung of the former AT&T Bell Laboratories (presently Lucent Technologies).

    Google Scholar 

  82. A. S. Arrott, in Ultrathin Magnetic Structures I, eds. J. A. C. Bland and B. Heinrich, (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  83. “Borazon”, Cubic Boron Nitride Powder Trademark of General Electric Company.

    Google Scholar 

  84. S. Reinke, M. Kuhr, W. Kulisch, and R. Kassing, Diamond Rel. Mater. 4, 272 (1995).

    Article  CAS  Google Scholar 

  85. S. Kidner, Ph. D. Thesis, University of Michigan (1994).

    Google Scholar 

  86. D. J. Kester, K. S. Ailey, and R. F. Davis, J. Mater. Res. 8, 1213 (1993).

    Article  CAS  Google Scholar 

  87. D. L. Medlin, T. A. Friedmann, P. B. Mirkarimi, P. Rez, M. J. Mills, and K. F. McCarty, J. Appl. Phys. 76, 295 (1994).

    Article  CAS  Google Scholar 

  88. S. Reinke, M. Kuhr, and W. Kulisch, in Proc. of The 4th International Symposium on Diamond Materials, (Reno, Nevada, May 1995).

    Google Scholar 

  89. D. J. Kester, K. S. Ailey, and D. J. Lichtenwalner, J. Vac. Sci. Technol. A 12, 3074 (1994).

    Article  CAS  Google Scholar 

  90. P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, and J. C. Barbour, Appl. Phys. Lett. 66, 2813 (1995).

    Article  CAS  Google Scholar 

  91. D. R. McKenzie, J. Vac. Sci. Technol. B 11, 1928 (1993).

    Article  CAS  Google Scholar 

  92. D. R. McKenzie, W. D. McFall, W. G. Sainty, C. A. Davis, and R. E. Collins, Diamond Relat. Mater. 2, 970 (1993).

    Article  CAS  Google Scholar 

  93. M. Kuhr, S. Reinke, W. Kulisch, Diamond Rel. Mater. 4, 375 (1995).

    Article  CAS  Google Scholar 

  94. H. Hofsass, C. Ronning, U. Griesmeier, M. Gross, S. Reinke, and M. Kuhr, submitted to Appl. Phys. Lett.

    Google Scholar 

  95. R. H. Wentorf, J. Phys. Chem. 63, 1934 (1959).

    Article  CAS  Google Scholar 

  96. F. P. Bundy and R. H. Wentorf, Jr., J. Chem. Phys. 38, 1144 (1963).

    Article  CAS  Google Scholar 

  97. M. Wakatsuki, K. Ichinose, and T. Aoki, Mater. Res. Bull. 7, 999 (1972).

    Article  CAS  Google Scholar 

  98. I. N. Dulin, L. V. Al’tshuler, V. Ya Vashchenko, and V. N. Zubarev, Fiz. Tverd. Tela (Leningrad) 11, 1252 (1962) [Sov. Phys. Solid State 11, 1016 (1969)].

    Google Scholar 

  99. T. Soma, A. Sawaoka, and S. Saito, Mater. Res. Bull. 7, 755 (1974).

    Article  Google Scholar 

  100. F. R. Corrigan and F. P. Bundy, J. Chem. Phys. 63, 3812 (1975).

    Article  CAS  Google Scholar 

  101. S. Nakano and O. Kukunaga, Diamond Relat. Mater. 2, 1409 (1993).

    Article  CAS  Google Scholar 

  102. T. Sato, T. ishii and N. Setaka, Commun. Am. Ceram. Soc. 65, C162 (1982).

    Article  CAS  Google Scholar 

  103. T. Ishii, T. Sato, Y. Sekikawa, and M. Iwata, J. Cryst. Growth 52, 285 (1981).

    Article  CAS  Google Scholar 

  104. A. Onodera et al., J. Mater. Sci. 25, 4279 (1990).

    Article  CAS  Google Scholar 

  105. R. M. Wentzcovitch, S. Fahy, M. L. Cohen, and S. G. Louie, Phys. Rev. B 38, 6191 (1988).

    Article  CAS  Google Scholar 

  106. F. P. Bundy and J. S. Kasper, J. Chem. Phys. 46, 3437 (1967).

    Article  CAS  Google Scholar 

  107. A. Kurdyumov, V. Slesarev, N. Ostrovskaya, A. Pilyankevich, and I. Frankevich, Dok. Akad. Nauk SSSR 239, 1337 (1978) [Sov. Phys.-Dokl. 23, 278 (1978)].

    Google Scholar 

  108. J. R. Riter, Jr., J. Chem. Phys. 59, 1538 (1973).

    Article  CAS  Google Scholar 

  109. Q. Johnson and A. C. Mitchell, Phys. Rev. Lett. 29, 1369 (1972).

    Article  CAS  Google Scholar 

  110. V. A. Pesin, M. I. Sokhor, and L. I. Fel’dgun, Russ. J. Phys. Chem. 53, 908 (1979).

    Google Scholar 

  111. E. J. Wheeler and D. Lewis, Mat. Res. Bull. 10, 687 (1975).

    Article  CAS  Google Scholar 

  112. D. L. Medlin, T. A. Friedmann, P. B. Mirkarimi, M. J. Mills, and K. F. McCarty, Phys. Rev. B 50, 7884 (1994).

    Article  CAS  Google Scholar 

  113. S. Reinke, M. Kuhr, and W. Kulisch, in Proceedings of the 187th Meeting of the Electrochemical Society,1995 (unpublished).

    Google Scholar 

  114. D. L. Medlin, T. A. Friedmann, P. B. Mirkarimi, G. F. Cardinale, and K. F. McCarty, J. Appl. Phys. 79, 3567 (1996).

    Article  CAS  Google Scholar 

  115. C.A. Taylor, II, S.W. Brown, V. Subramaniam, S Kidner, S.C. Rand, and R. Clarke Appl. Phys. Lett. 65, 1251 (1994).

    Article  CAS  Google Scholar 

  116. R. Geick, C. H. Perry, and G. Rupprecht, I hys. Rev. 146, 543 (1966).

    CAS  Google Scholar 

  117. R. S. Pease, Acta Cryst. 5, 536 (1952).

    Article  Google Scholar 

  118. D. M. Hoffman, G. L. Doll, and P C Eklund, Phys. Rev. B 30, 6051 (1984).

    Article  CAS  Google Scholar 

  119. R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59, 673 (1941).

    Article  CAS  Google Scholar 

  120. P. J. Gielisse S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, Phys. Rev. 155, 1039 (1967).

    Article  CAS  Google Scholar 

  121. O. Brafman, G. Lengvel, S. S. Mitra, P. J. Gielisse, J. N. Plendl, and L. C. Mansur, Solid State Commun. 6, 523 (1968).

    Article  CAS  Google Scholar 

  122. S. Kidner, C. A. Taylor II, and R. Clarke, Appl. Phys. Lett. 64, 1859 (1994).

    Article  CAS  Google Scholar 

  123. Kimball Physics Inc., 311 Kimball Hill Road, Wilton, NH.

    Google Scholar 

  124. S. Reinke, M. Kuhr, W. Kulisch, and R. Kassing, Diamond Relat. Mater. 4, 272 (1995).

    Article  CAS  Google Scholar 

  125. P. B. Mirkarimi, K. F. McCarty, D. L. Medlin, W. G. Wolfer, T. A. Friedmann, and E. J. Klaus, J. Mater. Res. 9, 2925 (1994).

    Article  CAS  Google Scholar 

  126. T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, and D. J. Otteson, J. Appl. Phys. 76, 3088 (1994).

    Article  CAS  Google Scholar 

  127. T. A. Friedmann, W. M. Clift, H. A. Johnsen, E. J. Klaus, K. F. McCarty, D. L. Medlin, M. J. Mills, and D. K. Ottesen, In Laser Ablation in Materials Processing: Fundamentals and Applications, ed. D. Braren, J. J. Dubowski, and D. P. Norton, Materials Research Society Proceedings Vol. 285, p. 507 (1993).

    Google Scholar 

  128. T. Wada and N. Yamashita, J. Vac. Sci. Technol. A 10, 515 (1992).

    CAS  Google Scholar 

  129. D. J. Kester and R. Messier, J. Appl. Phys. 72, 504 (1992).

    Article  CAS  Google Scholar 

  130. K. Inagawa, K. Watanabe, H. Ohsone, K. Saitoh, and A. Itoh, J. Vac. Sci. Technol. A 5, 2696 (1987).

    Article  CAS  Google Scholar 

  131. N. Tanabe, T. Hayashi, and M. Iwaki, Diamond Relat. Mater. 1, 883 (1992).

    Article  CAS  Google Scholar 

  132. W. Dworschak, K. Jung, and H. Erhardt, Thin Solid Films 254, 65 (1995).

    Article  CAS  Google Scholar 

  133. D. Bouchier, M. A. Sene’, Djouadi and P. Moller, Nucl. Instrum. Methods B 89, 369 (1994).

    Article  CAS  Google Scholar 

  134. H. Yokoyama, M. Okamoto, and Y. Osaka, Jpn. J. Appl. Phys. 30, 344 (1991).

    Article  CAS  Google Scholar 

  135. J. A. Sanjurjo, E. Lo’pez-Cruz, P. Vogl, and M. Cardona, Phys. Rev. B 28, 4579 (1983).

    Article  CAS  Google Scholar 

  136. S. Fahy, Phys. Rev. B 51, 12873 (1995); erratum (in press).

    Article  CAS  Google Scholar 

  137. P. Rodriguez-Hernandez et al., Phys. Rev. B 51, 14705 (1995).

    Article  CAS  Google Scholar 

  138. S. Fahy, private communication (to be published).

    Google Scholar 

  139. N. N. Sirota and A. F. Revinskii, Vesti Akad, Nauk BSSR, Ser. Fiz.-Mat. Navuk 6, 64 (1981).

    Google Scholar 

  140. T. D. Sokolovskii, Inorg. Mater. 19, 1311 (1983).

    Google Scholar 

  141. Y. Yakovenko et al.

    Google Scholar 

  142. S. Reinke, M. Kuhr, and W. Kulisch, in Proc. of 4th International Symposium on Diamond Materials,Reno, Nevada (1995).

    Google Scholar 

  143. D. R. McKenzie, W. D. McFall, W. G. Sainty, C. A. Davis, and R. E. Collins, Diamond Relat. Mater. 2, 970 (1993).

    Article  CAS  Google Scholar 

  144. D. J. Kester, K. S. Ailey, R. F. Davis, K. L. More, J. Mater. Res. 8, 1213 (1993).

    Article  CAS  Google Scholar 

  145. D. R. McKenzie, J. Vac. Sci. Technol. B 11, 1928 (1993).

    Article  CAS  Google Scholar 

  146. D. L. Medlin, T. A. Friedmann, P. B. Mirkarimi, P. Rez, M. J. Mills, and K. F. McCarty, J. Appl. Phys. 76, 295 (1994).

    Article  CAS  Google Scholar 

  147. D. L. Medlin, T. A. Friedmann, P. B. Mirkarimi, M. J. Mills, and K. F. McCarty, Phys. Rev. B 50, 7884 (1994).

    Article  CAS  Google Scholar 

  148. S. Fahy (University College, Cork, Ireland) has developed several island nucleation models which predict the behavior of phonon frequencies observed in BN films, private communication. To be published with C. A. Taylor 11 and Roy Clarke.

    Google Scholar 

  149. C. A. Tayloç, PhD Thesis, University of Michigan, Ann Arbor, 1996 (published by University Microfilms Inc., Ann Arbor, MI 48103).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taylor, C.A., Clarke, R. (1997). Growth Kinetics of Cubic Boron Nitride Films and Composites. In: Prelas, M.A., Benedictus, A., Lin, LT.S., Popovici, G., Gielisse, P. (eds) Diamond Based Composites. NATO ASI Series, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5592-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5592-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6358-6

  • Online ISBN: 978-94-011-5592-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics