Skip to main content

Design of Robotic Work Cells: Synthesis and Application

  • Conference paper
Integrated Design and Manufacturing in Mechanical Engineering
  • 384 Accesses

Abstract

The problem of designing robotic work cells has become a major field of research. Basically, this involves difficult issues like choosing suitable robots and placing them properly in the environment, as well as planning feasible time-optimal trajectories. Clearly, no global solution to this problem exists. Commercial robotic CAD systems, however more and more efficient, answer partially the questions of the designer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Benhabib et al.: “Robot Performance Optimization under Specified Dynamic Conditions“, Mech. and Mach. Theory, Vol. 26, n° 3, pp. 323–335, 1991.

    Article  Google Scholar 

  2. G. Cloutier et al.: “Robotization of Predetermined Environments: Solutions to the Workstation Design Problem”, Int. Conf. on CAD/CAM, Robotics and Factories of the Future, pp. 1411–1425, 1992.

    Google Scholar 

  3. P.A. Yvars and J. Doulcier: “Contribution to the Study of Automatic Positioning of Robot Manipulators in the Design of Flexible Systems for Manufacturing Industry”, to appear in the Int. Journal of Robotics and Artificial Intelligence.

    Google Scholar 

  4. T.C. Lueth: “Automatic Planning of Robot Workcell Layouts”, IEEE Int. Conf. on Rob. and Aut., pp. 1103–1108, 1992.

    Google Scholar 

  5. S. Zeghloul and J.A. Pamanes: “Optimal Placement of Manipulators in the Presence of Obstacles”, 8th World Congress on the Theory of Machines and Mechanisms, pp. 521–524, 1991.

    Google Scholar 

  6. K. Kolarov and B. Roth: “Best Placement of Telescoping Robots in Environments with Obstacles”, Int. Symp. on Intelligent Robots, pp. 3–12, 1993.

    Google Scholar 

  7. S.C. Sarin and W.E. Wilhelm: “Prototype Models for Two-Dimensional Layout Design of Robot Systems”, IIE Transactions, Vol 16, No 3, pp. 206–215, 1984.

    Article  Google Scholar 

  8. B. Paden and S. Sastry: “Optimal Kinematics Design of 6R manipulators”. The Int. Journal of Robotics Research, Vol 7, n° 2, pp. 43–61, 1988.

    Article  Google Scholar 

  9. F.C. Park: “On the Optimal Kinematic Design of Spherical and Spatial Mechanisms”, IEEE Int. Conf. on Rob. and Aut., pp. 1530–1535, 1991.

    Google Scholar 

  10. V. Scheinman and B. Roth: “On the Optimal Selection and Placement of Manipulators”, RoManSy’84, pp. 39–45, 1984.

    Google Scholar 

  11. K. Kolarov and B. Roth: “Best Estimates for the Construction of Robots in Environments with obstacles”, IEEE Int. Conf. on Rob. and Aut., pp. 377–382, 1992.

    Google Scholar 

  12. C.M. Gosselin and M. Guillot: “The Synthesis of Manipulators with Prescribed Workspace”, ASME Journal of Mechanical Design, Vol 113, pp. 451–455, 1991.

    Article  Google Scholar 

  13. A. Hemami et al.: “A Case Study of Two-Robot-Arm Workcell Material Handling”, Journal of Robotic Systems, 8(1), pp. 21–27, 1991.

    Article  Google Scholar 

  14. J.S. Hemmerle and B. Prinz: “Optimal Path Placement for Kinematically Redundant Manipulators”, IEEE Int. Conf. on Rob. and Aut., pp. 1234–1244, 1991.

    Google Scholar 

  15. O. Ma and J. Angeles: “The Concept of Dynamic Isotropy and its Applications to Inverse Kinematics and Trajectory Planning”, IEEE Int. Conf. on Rob. and Aut., pp. 481–486, 1990.

    Google Scholar 

  16. B. Nelson and M. Donath: “Optimizing the Location of Assembly Tasks in a Manipulator’s Workspace”, Journal of Robotic Systems, 7(6), pp. 791–811, 1990.

    Article  MATH  Google Scholar 

  17. Z.V. Shiller: “Interactive time optimal robot motion planning and work-cell layout design”, IEEE Int. Conf. on Robotics and Automation, pp. 964–969, 1989.

    Google Scholar 

  18. Z.V. Shiller: “Design of Robotic Manipulators for Optimal Dynamic Performances”, IEEE Int. Conf. on Robotics and Automation, pp. 344–349, 1991.

    Google Scholar 

  19. S. Manoocherhri and A.A. Seireg: “A Computer-Based Methodology for the Form Synthesis and Optimal Design of Robot Manipulators”, ASME Journal of Mechanical Design, Vol. 112, pp. 501–508, 1990.

    Article  Google Scholar 

  20. B. Faverjon and P. Tournassou: “The Mixed Approach for Motion Planning: Learning Global Strategies from a Local Planner”, Int. Joint Conference on Artificial Intelligence, pp. 1131–1137, 1987.

    Google Scholar 

  21. S. Dubowsky and T.D. Blubaugh: “Planning Time-Optimal Robotic Manipulator Motions and Work Places for Point-to point Tasks”, IEEE Trans, on Robotics and Automation, Vol.5, N°3, June 1989.

    Google Scholar 

  22. P. Wenger, J.M. Faivre: “Etude d’accessibilité et de morphologie de robot d’intervention dans un bol de générateur de vapeur”, Contract Report ECN/EDF, July 1994.

    Google Scholar 

  23. M. Darras: “Etude d’accessibilité et des modifications cinématiques du robot Schilling Titan II dans les bols de générateur de vapeur de type 900 et 1300 MW”, technical report, EDF-DER, 1993.

    Google Scholar 

  24. P. Chedmail and P. Wenger: “Design and positioning of a robot in an environment with obstacles using optimal search”, Conference IEEE Robotics and Automation, Scottsdale, USA, May 1989.

    Google Scholar 

  25. F. Reynier, P. Chedmail and P. Wenger: “Automatic positioning of robots, continuous trajectories feasibility among obstacles”, IEEE Int. Conf. on Systems, Man and Cybernetics, Chicago, IL, USA, pp. 189–194, Oct. 92.

    Google Scholar 

  26. P. Chedmail and P. Wenger: “Conception optimale d’un site robotisé de nettoyage d’avions”, Actes du congrès international de génie industriel de Montréal, pp 367–375, volume 1, Montréal, Québec, October 1995.

    Google Scholar 

  27. P. Chedmail and E. Ramstein: “Robot mechanisms synthesis and genetic algorithms”, IEEE ICRA’96 Conference, pp. 3466–3471, 22–28 april 1996, Minneapolis, USA.

    Google Scholar 

  28. E. Tabarah, V. Taussac, E. Dombre and B. Benhabib: “Optimal Trajectory Planning for Coordinated Two-Arm Modular Robotic Systems”, ‘93 ICAR, pp 617–622, Nov. 1993.

    Google Scholar 

  29. P. Wenger P. and P. Chedmail: “On the Connectivity of Manipulator free-Workspace”, Journal of Robotic Systems, Vol 8(6), Dec 1991, pp 767–799.

    Article  MATH  Google Scholar 

  30. P. Chedmail and P. Wenger: “On the design of robotic work cells”, COMES ‘93 Int. Conf. on mechanism design and analysis, Clermont-Ferrant, May 1993, pp 61–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Wenger, P. (1997). Design of Robotic Work Cells: Synthesis and Application. In: Chedmail, P., Bocquet, JC., Dornfeld, D. (eds) Integrated Design and Manufacturing in Mechanical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5588-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5588-5_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6356-2

  • Online ISBN: 978-94-011-5588-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics