Skip to main content

Large Hybrid Finite Element Methods for Electromagnetics

Applications to Antennas and Scattering

  • Chapter
Computational Electromagnetics and Its Applications

Abstract

This chapter provides an overview of the finite element method (FEM) as applied to electromagnetic scattering and radiation problems. It begins with a review of the methodology with particular emphasis on new developments over the past five years relating to feed modeling, parallelization and mesh truncation. New applications which illustrate the method’s capabilities, versatility and utility for general purpose applications are discussed. Specifically, new finite element modeling of antennas on doubly curved platforms, bandpass radomes and jet engine scattering are presented using a variety of mesh truncation schemes (boundary integral, absorbing boundary conditions and perfectly matched absorbers) are presented. Also, an entire section of the chapter is devoted to a reduced order method based on the Padè expansion. This reduced order method is used to obtain broadband responses from a few data points of the entire response. It is introduced in this chapter for the first time in connection with hybrid finite element systems and promises substantial computational savings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Volakis, J.L., Chatterjee, A., and Kempel, L.C.: A review of the finite element method for three dimensional scattering, J. Opt. Soc. of America, A, (1994), 1422–1433.

    Google Scholar 

  2. Senior, T.B.A. and Volakis, J.L.: Approximate Boundary Conditions in Electromagnetics, London, IEEE Press, (1995).

    Book  MATH  Google Scholar 

  3. Zienkiewicz, O.C.: The finite element method, McGraw Hill, New York, 3rd edition, (1979).

    Google Scholar 

  4. Chatterjee, A., Jin, J.M., and Volakis, J.L.: A finite element formulation with absorbing boundary conditions for three dimensional scattering, IEEE Trans. Antennas Propagat. 41 (1993), 221–226.

    Article  Google Scholar 

  5. Webb, J.P.: Edge elements and what they can do for you, IEEE Trans. Mag. 29 (1993), 1460–1465.

    Article  Google Scholar 

  6. Sun, D., Manges, J., Yuan, X., and Cendes, Z.: Spurious Modes in Finite-Element Methods, IEEE Antennas Propagat. Magaz. 37(5) (Oct. 1995), 12–24.

    Article  Google Scholar 

  7. Whitney, H.: Geometric Integration Theory, Princeton University Press, (1957).

    MATH  Google Scholar 

  8. Nedelec, J.C.: Mixed finite elements in R 3, Numer. Math. 35 (1980), 315–341.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bossavit, A. and Verite, J.C.: A mixed FEM-BIEM method to solve 3D eddy current problems, IEEE Trans. Mag. 18 (Mar. 1982), 431–435.

    Article  Google Scholar 

  10. Bossavit, A.: Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism, IEEE Proc. 135(A/8) (Nov. 1988).

    Google Scholar 

  11. Barton, M.L. and Cendes, Z.J.: New vector finite elements for three-dimensional magnetic field computation, J. Appl. Phys. 61(8) (Apr. 1987), 3919–3921.

    Article  Google Scholar 

  12. van Welij, J.S.: Calculation of eddy currents in terms of H on hexahedra, IEEE Trans. Mag. 21 (Nov. 1985), 2239–2241.

    Article  Google Scholar 

  13. Lee, J.F., Sun, D.K., and Cendes, Z.J.: Full-wave analysis of dielectric waveguides using tangential vector finite elements, IEEE Trans. Microwave Theory Tech. 39(8) (Aug. 1991), 1262–1271.

    Article  Google Scholar 

  14. Jin, J.M. and Volakis, J.L.: Electromagnetic scattering by and transmission through a three-dimensional slot in a thick conducting plane, IEEE Trans. Antennas Propagat. 39 (Apr. 1991), 543–550.

    Article  Google Scholar 

  15. Graglia, R.D., Peterson, A.F., and Wilton, D.R.: Higher order conforming vector bases on curvilinear elements, This issue.

    Google Scholar 

  16. Lee, J.F., Sun, D.K., and Cendes, Z.J.: Tangential vector finite elements for electromagnetic field computation, IEEE Trans. Mag., 27(5) (Sept. 1991), 4032–4035.

    Article  Google Scholar 

  17. Mur, G. and deHoop, A.T.: A finite element method for computing three-dimensional electromagnetic fields in inhomogeneous media, IEEE Trans. Mag. 21 (Nov. 1985), 2188–2191.

    Article  Google Scholar 

  18. Wang, J.S. and Ida, N.: Curvilinear and higher order edge finite elements in electromagnetic field computation, IEEE Trans. Mag. 29(2) (Mar. 1993), 1491–1494.

    Article  Google Scholar 

  19. Webb, J.P. and Forghani, B.: Hierarchal scalar and vector tetrahedra, IEEE Trans. Mag. 29(2) (Mar. 1993), 1495–1498.

    Article  Google Scholar 

  20. Sacks, Z.S., Kingsland, D.M., Lee, R., and Lee, J.F.: A perfectly matched anisotropic absorber for use as an absorbing boundary condition, IEEE Trans. Antennas Propagat. 43(12) (Dec. 1995).

    Google Scholar 

  21. Silvester, P. and Hsieh, M.S.: Finite element solution of 2-dimensional exterior field problems, Proc. IEEE 118 (Dec. 1971), pp. 1743–1747.

    MathSciNet  Google Scholar 

  22. McDonald, B.H. and Wexler, A.: Finite element solution of unbounded field problems, IEEE Trans. Microwave Theory Tech. 20 (Dec. 1972), 841–847.

    Article  Google Scholar 

  23. Jin, J.M. and Volakis, J.L.: TM scattering by an inhomogeneously filled aperture in a thick ground plane, IEEE Proc. 137(H/3) (June 1990), 153–159.

    Google Scholar 

  24. Yuan, X., Lynch, D.R., and Strohbehn, J.W.: Coupling of finite element and moment methods for electromagnetic scattering from inhomogeneous objects, IEEE Trans. Antennas Propagat. 38 (Mar. 1990), 386–393.

    Article  Google Scholar 

  25. Yuan, X.: Three dimensional electromagnetic scattering from inhomogeneous objects by the hybrid moment and finite element method, IEEE Trans. Antennas Propagat. 38 (1990), 1053–1058.

    Article  Google Scholar 

  26. Angelini, J., Soize, C., and Soudais, P.: Hybrid numerical method for harmonic 3D Maxwell equations: Scattering by a mixed conducting and inhomogeneous anisotropic dielectric medium, IEEE Trans. Antennas Propagat. 41(1) (Jan. 1993), 66–76.

    Article  Google Scholar 

  27. Antilla, G.E. and Alexopoulos, N.G.: Scattering from complex three-dimensional geometries by a curvilinear hybrid finite element-integral equation approach, J. Opt. Soc. Am. A 11(4) (Apr. 1994), 1445–1457.

    Article  Google Scholar 

  28. Soudais, P.: Computation of the electromagnetic scattering from complex 3D objects by a hybrid FEM/BEM method, J. Elect Waves Appl. 9(7–8) (1995), 871–886.

    Article  Google Scholar 

  29. Paulsen, K.D., Jia, X., and Sullivan, J.: Finite element computations of specific absorption rates in anotomically conforming full-body models for hyperthermia treatment analysis, IEEE Trans. Biomedical Engr. 40(9) (Sept. 1993), 933–945.

    Article  Google Scholar 

  30. Eibert, T. and Hansen, V.: Calculation of unbounded field problems in free-space by a 3D FEM/BEM-hybrid approach, J. Elect Waves Appl. 10(1) (1996), 61–78.

    Article  Google Scholar 

  31. Rao, S.M., Wilton, D.R., and Glisson, A.W.: Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas Propagat. 30(3) (May 1982), 409–418.

    Article  Google Scholar 

  32. Cwik, T.: Coupling finite element and integral equation solutions using decoupled boundary meshes (electromagnetic scattering), IEEE Trans. Antennas Propagat. 40(12) (Dec. 1992), 1496–1504.

    Article  Google Scholar 

  33. Jin, J.M., Volakis, J.L., and Collins, J.D.: A finite element-boundary integral method for scattering and radiation by two- and three-dimensional structures, IEEE Antennas and Propagat. Society Magazine 33(3) (June 1991), 22–32.

    Article  Google Scholar 

  34. Arvas, E., Rahhal-Arabi, A., Sadigh, A., and Rao, S.M.: Scattering from multiple conducting and dielectric bodies of arbitrary shape, IEEE Trans. Antennas Propagat Soc. Mag. 33(2) (Apr. 1991), 29–36.

    Article  Google Scholar 

  35. Collins, J.D., Jin, J.M., and Volakis, J.L.: Eliminating interior resonances in FE-BI methods for scattering, IEEE Trans. Antennas Propagat. 40 (Dec. 1992), 1583–1585.

    Article  Google Scholar 

  36. Jin, J.M. and Volakis, J.L.: A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity, IEEE Trans. Antennas Propagat. 39 (1991), 1598–1604.

    Article  Google Scholar 

  37. Volakis, J.L., Gong, J., and Alexanian, A.: A finite element boundary integral method for antenna RCS analysis, Electromagnetics 14(1) (1994), pp. 63–85.

    Article  Google Scholar 

  38. Jin, J.M. and Volakis, J.L.: Scattering and radiation analysis of three-dimensional cavity arrays via a hybrid finite element method, IEEE Trans. Antennas Propagat. 41 (Nov. 1993), pp. 1580–1586.

    Article  Google Scholar 

  39. Gong, J., Volakis, J.L., Woo, A., and Wang, H.: A hybrid finite element boundary integral method for analysis of cavity-backed antennas of arbitrary shape, IEEE Trans. Antennas Propagat. 42 (1994), pp. 1233–1242.

    Article  Google Scholar 

  40. Kempel, L.C., Volakis, J.L., and Sliva, R.: Radiation by cavity-backed antennas on a circular cylinder, IEEE Proceedings, Part H (1995), pp. 233–239.

    Google Scholar 

  41. Zhuang, Y., Wu, K-L., Wu, C., and Litva, J.: Acombined full-wave CG-FFT method for rigorous analysis of large microstrip antenna arrays, IEEE Trans. Antennas Propagat. 44 (Jan. 1996), pp. 102–109.

    Article  Google Scholar 

  42. Collins, J.D., Jin, J.M., and Volakis, J.L.: A combined finite element-boundary element formulation for solution of two-dimensional problems via CGFFT, Electromagnetics 10 (1990), pp. 423–437.

    Article  Google Scholar 

  43. Barkeshli, K. and Volakis, J.L.: On the implementation and accuracy of the conjugate gradient FFT method, IEEE Trans. Antennas Propagat. 32 (1990), pp. 20–26.

    Google Scholar 

  44. Jin, J.M. and Volakis, J.L.: Biconjugate gradient FFT solution for scattering by planar plates, Electromagnetics 12, pp. 105–119.

    Google Scholar 

  45. Volakis, J.L.: Iterative Solvers, IEEE Antenna Propagat. Soc. Mag. 37(6) (Dec. 1995), pp. 94–96.

    MathSciNet  Google Scholar 

  46. Özdemir, T. and Volakis, J.L.: A comparative study of an absorbing boundary condition and an artificial absorber for terminating finite element meshes, Radio Sci. 29(5) (Sept.-Oct. 1994), pp. 1255–1263.

    Article  Google Scholar 

  47. Farhat, C. and Roux, F-X.: An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems, SIAM J. Sci. Stat. Comput. 13 (Jan. 1992), pp. 379–396.

    Article  MathSciNet  MATH  Google Scholar 

  48. Rokhlin, V.: Rapid solution of integral equations of scattering theory in two dimensions, Journal of Computational Physics 86(2) (1990), pp. 414–439.

    Article  MathSciNet  MATH  Google Scholar 

  49. Chew, W.C., Lu, C.C., Michielssen, E., and Song, J.M.: Fast solution methods in electromagnetics, this issue.

    Google Scholar 

  50. Coifman, R., Rokhlin, V., and Wandzura, S.: The fast multipole method for the wave equation: A pedestrian prescription, IEEE Antennas and Propagat. Magazine, (June 1993).

    Google Scholar 

  51. Lu, C.C. and Chew, W.C.: Fast far field approximation for calculating the RCS of large objects, Micro. Opt. Tech. Lett. 8(5) (Apr. 1995), pp. 238–241.

    Article  MathSciNet  Google Scholar 

  52. Bindiganavale, S. and Volakis, J.L.: A hybrid FEM-FMM technique for electromagnetic scattering, Proceedings of the 12th annual review of progress in applied computational electromagnetics (ACES), Naval Postgraduate School, Monterey, CA, (Mar. 1996), pp. 563–570.

    Google Scholar 

  53. Bindiganavale, S.S. and Volakis, J.L.: Guidelines for using the fast multipole method to calculate the RCS of large objects, Micro. Opt. Tech. Lett. 11(4) (Mar. 1996).

    Google Scholar 

  54. Bleszynski, E., Bleszynski, M., and Jaroszerwicz, T.: A fast integral equation solver for Electromagnetic scattering problems, IEEE Antennas Propagat. Symposium Processdings, Seattle, WA, (1994), pp. 417–420.

    Google Scholar 

  55. Bayliss, A. and Turkei, E.: Radiation boundary conditions for wave-like equations, Comm. Pure Appl Math. 33 (1980), pp. 707–725.

    Article  MathSciNet  MATH  Google Scholar 

  56. Engquist, B. and Majda, A.: Absorbing boundary conditions for the numerical simulation of waves, Math. Comp. 31 (1977), pp. 629–651.

    Article  MathSciNet  MATH  Google Scholar 

  57. Webb, J.P. and Kanellopoulos, V.N.: Absorbing boundary conditions for finite element solution of the vector wave equation, Microwave and Opt. Techn. Letters 2(10) (Oct. 1989), pp. 370–372.

    Article  Google Scholar 

  58. Kanellopoulos, V.N. and Webb, J.P.: The importance of the surface divergence term in the finite element-vector absorbing boundary condition method, IEEE Trans. Microw. Theory Tech. 43(9) (Sept. 1995), pp. 2168–2170.

    Article  Google Scholar 

  59. Chatterjee, A. and Volakis, J.L.: Conformai absorbing boundary conditions for 3D problems: Derivation and applications, IEEE Trans. Antennas Propagat. 43(8) (Aug. 1995), pp. 860–866.

    Article  Google Scholar 

  60. Kempel, L.C. and Volakis, J.L.: Scattering by cavity-backed antennas on circular cylinder, IEEE Trans. Antennas Propagat. 42 (1994), pp. 1268–1279.

    Article  Google Scholar 

  61. Senior, T.B.A., Volakis, J.L., and Legault, S.R.: Higher Order impedance boundary conditions, IEEE Trans. Antennas Propagat., to appear.

    Google Scholar 

  62. Legault, S.R., Senior, T.B.A., and Volakis, J.L.: Design of planar absorbing layers for domain truncation in FEM applications, Electromagnetics, to appear.

    Google Scholar 

  63. Gong, J. and Volakis, J.L.: Optimal selection of uniaxial artificial absorber layer for truncating finite element meshes, Electronics Letters 31(18) (Aug. 1995), pp. 1559–1561.

    Article  Google Scholar 

  64. Gong, J. and Volakis, J.L.: An efficient and accurate model of the coax cable feeding structure for FEM simulations, IEEE Trans. Antennas Propagat. 43(12) (Dec. 1995), pp. 1474–1478.

    Article  Google Scholar 

  65. Volakis, J.L., Gong, J., and Özdemir, T.: FEM Applications to Conformai Antennas, Finite Element Method Software in Microwave Applications, Tatsuo Itoh, Giuseppe Pelosi, and Peter Silvester, eds., Wiley, (1996).

    Google Scholar 

  66. Kincaid, D.R. and Oppe, T.K.: ITPACK on supercomputers, Int. J. on Num. Methods, Lecture Notes in Math. 1005 (1982), pp. 151–161.

    Article  Google Scholar 

  67. Anderson, E. and Saad, Y.: Solving sparse triangular linear systems on parallel computers, Int. J. of High Speed Computing 1 (1989), pp. 73–95.

    Article  MATH  Google Scholar 

  68. Chatterjee, A., Volakis, J.L., and Windheiser, D.: Parallel computation of 3D electromagnetic scattering using finite elements, Int. J. Num. Modeling.: Electr. Net. Dev. and Fields 7 (1994), pp. 329–342.

    Article  Google Scholar 

  69. Kumashiro, S., Rohrer, R., and Strojwas, A.: Asymptotic waveform evaluation for transient analysis of 3-D interconnect structures, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 12(7) (July 1993), pp. 988–996.

    Article  Google Scholar 

  70. Pillage, L. and Rohrer, R.: AWE: Asymptotic Waveform Estimation, Technical Report, SRC-CMU Research Center for Computer-Aided Design, Carnegie Mellon University, (1988).

    Google Scholar 

  71. Chiprout, E. and Nakhla, M.: Asymptotic waveform evaluation and moment matching for interconnect analysis, Norwell, Kluwer Academic Publishers, (1994).

    Book  MATH  Google Scholar 

  72. Volakis, J.L., Chatterjee, A., and Gong, J.: A class of hybrid finite element methods for electromagnetics: A review, J. Electromagn. Waves Applications 8(9/10) (1994), pp. 1095–1124.

    Article  Google Scholar 

  73. Gong, J., Volakis, J.L., Woo, A.C., and Wang, H.G.: A Hybrid Finite Element-Boundary Integral Method for the Analysis of Cavity-backed Antennas of Arbitrary Shape, IEEE Trans Antenna and Propagat. 42(9) (1994), pp. 1233–1242.

    Article  Google Scholar 

  74. Lehner, Joseph: Partial fraction decompositions and expansions of zero, Trans. Amer. Math. Soc. 87 (1958), pp. 130–143.

    Article  MathSciNet  MATH  Google Scholar 

  75. Putnam, J.M. and Medgyesi-Mitschang, L.N.: Combined field integral equation formulation for axially inhomogeneous bodies of revolution, McDonnell Douglas Research Labs, MDC QA003, (Dec. 1987).

    Google Scholar 

  76. Pelton, E.L. and Munk, B.A.: Scattering from periodic arrays of crossed dipoles, IEEE Trans. Antennas Propagat. AP-27, pp. 323–330.

    Google Scholar 

  77. Wang, H.: Personal communication, China Lake, CA, (1995).

    Google Scholar 

  78. Boyse, N.E. and Seidl, A.A.: A hyrid finite element method for 3D scattering using nodal and edge elements, IEEE Trans. Antennas Propagat. 42 (Oct. 1994), pp. 1436–1442.

    Article  Google Scholar 

  79. Cwik, T.: Parallel decomposition methods for the solution of electromagnetic scattering problems, Electromagnetics 42 (1992), pp. 343–357.

    Article  Google Scholar 

  80. Le Tallec, P., Sallel, E., and Vidrascu, M.: Solving large scale structural problems on parallel computers using domain decomposition techniques, Chapter in Advances in Parallel and Vector Processing for Structural Mechanics, B. Topping and M. Papadrakakis, eds., CIVIL-COMP Ltd. Edinburgh, Scotland, (1994).

    Google Scholar 

  81. Golias, N., Papagiannakis, A., and Tsiboukis, T.: Efficient mode analysis with edge elements and 3D adaptive refinement, IEEE Trans. MTT, 42 (Jan. 1994), pp. 99–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Volakis, J.L., Gong, J., Ozdemir, T. (1997). Large Hybrid Finite Element Methods for Electromagnetics. In: Campbell, T.G., Nicolaides, R.A., Salas, M.D. (eds) Computational Electromagnetics and Its Applications. ICASE/LaRC Interdisciplinary Series in Science and Engineering, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5584-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5584-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6354-8

  • Online ISBN: 978-94-011-5584-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics