Skip to main content
  • 299 Accesses

Abstract

The evolution of a N-dimensional quantum mechanical system where N = 1 or 2 is described by the solutions to a time-dependent Schrödinger equation [1, 2, 3],

$$ {S_N}\psi \left( {x,t} \right) = 0, $$
(1)

where the Schrödinger operator is given by

$$ {S_N} = \sum\limits_{\sigma = 1}^N {{\partial _{x\sigma x\sigma }}} + 2i{\partial _\tau } - 2V\left( {x,\tau } \right). $$
(2)

and V(x, τ) is, for the moment, an arbitrary time-dependent potential. The symbol x = (x 1, x 2) refers to the 2-tuple of coordinates in the 2-dimensional configuration space [4]. If N = 1, then we shall write x = x l = x. The symbol ∂ σ represents the partial derivative with respect to x σ . The analytical solution of Eq. (1) is possible for certain choices of the τ-dependent potential, V(x, τ), because in those cases, Eq. (1) admits Lie symmetries. We shall work with space-time or kinematical symmetries of Eq. (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Messiah, Quantum Mechanics, 3rd edition (Wiley,New York, 1961).

    Google Scholar 

  2. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th edition (Oxford U. P., London, 1958).

    Google Scholar 

  3. C. Cohen-Tannoudji, B. Diu, and F. LaLoë, Quantum Mechanics, Vol. I and II. (Wiley, New York, 1977).

    Google Scholar 

  4. W. Miller, Jr., Symmetry and Separation of Variables. (Addison-Wesley, Reading, MA, 1977).

    Google Scholar 

  5. D. R. Truax, J. Math. Phys. 22, (1981).

    Google Scholar 

  6. V. A. Kosteleckÿ, V. I. Man’ko, M. M. Nieto, and D. R. Truax, Phys. Rev. A 48, 951 (1993).

    Article  Google Scholar 

  7. D. R. Truax, J. Math. Phys. 23, 43 (1982).

    Article  CAS  Google Scholar 

  8. S. Gee and D. R. Truax, Phys. Rev. A 29, 1627 (1984).

    Article  CAS  Google Scholar 

  9. M. M. Nieto and D. R. Truax, Forschritte der, in press.

    Google Scholar 

  10. M. M. Nieto and D. R. Truax, “Displacement-operator squeezed states. I. Time-dependent systems having isomorphic symmetry algebras” J. Math. Phys., submitted.

    Google Scholar 

  11. M. M. Nieto and D. R. Truax, “Displacement-operator squeezed states. II. Time-dependent systems having isomorphic symmetry algebras” J. Math. Phys., submitted.

    Google Scholar 

  12. There is a rapidly growing literature on the subject of time-dependent invariants. We ask for the indulgence of those authors whose work is not mentioned here. Selected references are: H. R. Lewis, Jr., J. Math. Phys. 9, 1976 (1968); 25, 1139 (1984); H. R. Lewis, Jr. and W. B. Riesenfeld, J. Math. Phys. 10, 1458 (1969). We would refer the reader to the work of V. I. Man’ko and V. V. Dodonov in the book Invariants and the Evolution of Nonstationary Quantum Systems, edited by M. A. Markov, (Nova Science, Commack, New York, 1989). There are many references cited in this volume. G. Schrade, V. I. Man’ko, W. P. Schleich, and R. J. Glauber, Quantum Semiclass. Opt. 7, 307–325 (1995). J. G. Hartley and J. R. Ray, Phys. Rev. A 25, 2388 (1982); J. G. Hartley and J. R. Ray, Phys. Rev. D 25, 382 (1982); J. R. Ray, Phys. Rev. A 28, 2603–2605 (1983). U. Niederer, Helv. Phys. Acta 47, 167–172 (1974). C. P. Boyer, Helv. Phys. Acta, 47, 589 (1974). C. P. Boyer, R. T. Sharp, and P. Winternitz, J. Math. Phys. 17, 1439 (1976). S. Kais and R. D. Levine, Phys. Rev. A 34, 4615 (1986). R. L. Anderson, S. Kumei, and C. E. Wulfman, Rev. Mex. Fis. bf 21, 1, 35 (1972).

    Google Scholar 

  13. A. Kalivoda and D. R. Truax, “Symmetry of the N-dimensional Schrödinger equation,” to be published.

    Google Scholar 

  14. E. A. Coddington, An Introduction to Ordinary Differential Equations. (Prentice-Hall, Englewood Cliffs, N. J., 1961).

    Google Scholar 

  15. A. Kalivoda and D. R. Truax, “Lie symmetry and analytically solvable, time-dependent Schrödinger equations in dimension,” to be published.

    Google Scholar 

  16. W. Miller, Jr., Symmetry Groups and their Applications. (Academic, New York, 1972).

    Google Scholar 

  17. W. Miller, Jr., Lie Theory and Special Functions. (Academic, New York, 1968).

    Google Scholar 

  18. E. C. Zachmanoglou and D. W. Thoe, Introduction to Partial Differential Equations with Applications (Williams and Wilkens, Baltimore, Md., 1976).

    Google Scholar 

  19. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, Berlin, 1966).

    Google Scholar 

  20. W. Kaplan, Advanced Calculus, 2nd edition (Addison-Wesley, Reading, MA, 1973).

    Google Scholar 

  21. E. Schrödinger, Naturwissenschaften 14, 664 (1926).

    Article  Google Scholar 

  22. R. J. Glauber, Phys. Rev. 131, 2766 (1963).

    Article  Google Scholar 

  23. J. R. Klauder and B.-S. Skagerstam, Coherent States - Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985).

    Google Scholar 

  24. M. M. Nieto, “Coherent States with Classical Motion; From an Analytical Method Complementary to Group Theory” in Group Theoretical Methods in Physics, Proceedings, Vol. II, of International Seminar at Zvenigorod, 1982, ed. by M. A. Markov (Nauka, Moscow, 1983), p. 174. A copy of this article can also be found in [26].

    Google Scholar 

  25. M. M. Nieto and L. M. Simmons, Jr., Phys. Rev. D 20, 1321, 1332 (1979). There are six papers in this interesting series. The others are M. M. Nieto and L. M. Simmons, Jr., Phys. Rev. D 20, 1342 (1979); M. M. Nieto, Phys. Rev. D 22, 391 (1980); V. P. Gutschick and M. M. Nieto, Phys. Rev. D 22, 403 (1980); M. M. Nieto, L. M. Simmons, Jr., and V. P. Gutschick, Phys. Rev. D 23, 927 (1981).

    Google Scholar 

  26. M. M. Nieto and D. R. Truax, to be published.

    Google Scholar 

  27. See V. I. Manko and V. V. Dodonov in Invariants and the Evolution of Nonstationary Quantum Systems, edited by M. A. Markov, (Nova Science, Commack, New York, 1989), and references therein.

    Google Scholar 

  28. This is a simplification and not a necessary requirement. See Ref. [7].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Truax, D.R. (1997). Lie Symmetries in Quantum Mechanics. In: Calais, JL., Kryachko, E. (eds) Conceptual Perspectives in Quantum Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5572-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5572-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6348-7

  • Online ISBN: 978-94-011-5572-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics