Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 343))

  • 257 Accesses

Abstract

Rare-earth titanium oxides show the systematics for a new way to tailor superlattices in bulk crystals. It is shown that series of periodic structures can be created from well-known ABO3 compounds by the process of oxygen intercalation, i.e. by an ordered incorporation of excess oxygen to form AB03+y compositions. The intercalation process slices the threedimensional ABO3 structure into subunits of different thickness, each representing a defined oxygen composition. These basic structural units are members of a homologous series, which can be combined in various ways to form new superlattices, the physical character of which varies between that of a semiconductor and a ferroelectric insulator. In contrast to the usual procedure of extrinsic doping, which creates disorder, these variations are achieved without changing the chemical character of the compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.G. Bednorz and K.A. Müller, Z. Phys. B 64, 189 (1986).

    Article  ADS  Google Scholar 

  2. J.G. Bednorz, M. Takashige and K.A. Müller, Europhys. Lett. 3, 379 (1987).

    Article  ADS  Google Scholar 

  3. S.N. Ruddlesden and P. Popper, Acta Cryst. 11, 54 (1958).

    Article  Google Scholar 

  4. Y. Tokura and T. Arima, Jpn. J. Appl. Phys. 29, 2388 (1990).

    Article  ADS  Google Scholar 

  5. M. Gasperin, Acta. Cryst. B 31, 2129 (1975); K. Scheunemann and H.K. Müller-Buschbaum, J. Inorg. Nucl. Chem. 37, 1897 (1975).

    Article  Google Scholar 

  6. K. Scheunemann and H.K. Müller-Buschbaum, J. Inorg. Nucl. Chem. 36, 1965 (1974).

    Article  Google Scholar 

  7. N. Ishizawa, F. Marumo, T. Kawamura and M. Kimura, Acta Cryst. B 31, 1912 (1975).

    Article  Google Scholar 

  8. J.B. Goodenough and M. Longo, in: Landoldt-Boernstein New Series. Vol. III/4a: Crystal and Solid State Physics, ed. by K.H. Hellwege and A.M. Hellwege (Springer, Berlin, Heidelberg, New York, 1970) p. 262, Fig. 73.

    Google Scholar 

  9. R.J. Bouchard and J.L. Gillson, Mat. Res. Bull. 7, 873 (1972).

    Article  Google Scholar 

  10. F. Lichtenberg, A. Catana, J. Mannhart and D.G. Schlom, Appl. Phys. Lett. 60, 1138 (1992).

    Article  ADS  Google Scholar 

  11. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz and F. Lichtenberg, Nature 372, 532 (1994).

    Article  ADS  Google Scholar 

  12. G. Gao, S. McCall and J.E. Crow, Phys. Rev. B 55, R672 (1997).

    Article  ADS  Google Scholar 

  13. T. Williams, F. Lichtenberg, A. Relier and J.G. Bednorz, Mat. Res. Bull. 26, 763 (1991).

    Article  Google Scholar 

  14. J.D. Jorgensen, B. Dabrowski, S. Pei, D.R. Richards and D.G. Hinks, Phys. Rev. B 40, 2187 (1989).

    Article  ADS  Google Scholar 

  15. G. Aeppli and D.J. Buttrey, Phys. Rev. Lett. 61, 203 (1988).

    Article  ADS  Google Scholar 

  16. S. Nanamatsu, M. Kimura, K. Doi, S. Matsushita and N. Yamada, Ferroelectrics 8, 511 (1974).

    Article  Google Scholar 

  17. R.D. Rosner and E.H. Turner, Appl. Opt. 7, 171 (1968).

    Article  ADS  Google Scholar 

  18. S. Nanamatsu, M. Mimura, K. Doi and M. Takahashi, J. Phys. Soc. Japan 30, 300 (1971).

    Article  ADS  Google Scholar 

  19. F. Lichtenberg, D. Widmer, J.G. Bednorz, T. Williams and A. Relier, Z. Phys. B 82, 211 (1991).

    Article  ADS  Google Scholar 

  20. D.A. MacLean and J.E. Greedan, Inorganic Chem. 20, 1025 (1981).

    Article  Google Scholar 

  21. T. Williams, H. Schmalle, A. Relier, F. Lichtenberg, D. Widmer and J.G. Bednorz, J. Solid State Chem. 93, 534 (1991).

    Article  ADS  Google Scholar 

  22. F. Lichtenberg, T. Williams, A. Relier, D. Widmer and J.G. Bednorz, Z. Phys. B 84, 369 (1991).

    Article  ADS  Google Scholar 

  23. D.A. MacLean, K. Seto and J.E. Greedan, J. Solid State Chem. 40, 241 (1981).

    Article  ADS  Google Scholar 

  24. D.A. MacLean and J.E. Greedan, Inorg. Chem. 20, 1025 (1981).

    Article  Google Scholar 

  25. H.W. Schmalle, T. Williams, A. Relier, F. Lichtenberg, D. Widmer and J.G. Bednorz, Acta Cryst. C 51, 1243 (1995).

    Article  Google Scholar 

  26. T. Williams, F. Lichtenberg, D. Widmer, J.G. Bednorz and A. Relier, J. Solid State Chem. 103, 375 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bednorz, J.G., Wachtmann, K.H., Broom, R., Ariosa, D. (1997). Novel Two-Dimensional Perovskites. In: Kaldis, E., Liarokapis, E., Müller, K.A. (eds) High-Tc Superconductivity 1996: Ten Years after the Discovery. NATO ASI Series, vol 343. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5554-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5554-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6340-1

  • Online ISBN: 978-94-011-5554-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics