Skip to main content

Interrelationships Between Nuclear Structure and Transcriptional Control of Cell Cycle and Tissue-Specific Genes

  • Chapter
Genome Structure and Function

Part of the book series: NATO ASI Series ((ASHT,volume 31))

  • 364 Accesses

Abstract

Three parameters of nuclear structure contribute to transcriptional control. The linear representation of promoter elements provides competency for physiological responsiveness within the contexts of developmental as well as cell cycle and phenotype-dependent regulation. Chromatin structure and nucleosome organization reduce distances between independent regulatory elements providing a basis for integrating components of transcriptional control. The nuclear matrix supports gene expression by imposing physical constraints on chromatin related to three dimensional genomic organization. In addition, the nuclear matrix facilitates gene localization as well as the concentration and targeting of transcription factors. Several lines of evidence are presented which are consistent with involvement of multiple levels of nuclear architecture in cell growth and tissue-specific gene expression during differentiation. Growth factor and steroid hormone responsive modifications in chromatin structure, nucleosome organization and the nuclear matrix are considered which influence transcription of the cell cycle regulated histone gene and the bone tissue-specific osteocalcin gene during progressive expression of the osteoblast phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stein, G.S., Lian, J.B., and Owen, T.A. (1990) Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation.FASEB J.4111–3123.

    Google Scholar 

  2. Stein, G.S. and Lian, J.B.(1993) Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype.Endocrine Reviews 14,424–442.

    PubMed  CAS  Google Scholar 

  3. Stein, G.S. and Lian, J.B. (1995) Molecular mechanisms mediating proliferation-differentiation interrelationships during progressive development of the osteoblast phenotype: update 1995. Endocrine Reviews, 4:290–297.

    CAS  Google Scholar 

  4. Stein, G.S., Stein, J.L., van Wijnen, A.J., and Lian, J.B. (1992) Regulation of histone gene expression.Curr. Op. in Cell Biol.4166–173.

    Article  CAS  Google Scholar 

  5. Stein, G.S., Stein, J.L., van Wijnen, A.J., and Lian, J.B. (1994) Histone gene transcription: a model for responsiveness to an integrated series of regulatory signals mediating cell cycle control and proliferation/differentiation interrelationships.J. Cell. Biochem.54393–404.

    Article  PubMed  CAS  Google Scholar 

  6. Stein, G.S., Stein, J.L., van Wijnen, A.J., Lian, J.B., Quesenberry, P.J. (1995) Molecular mechanisms mediating cell cycle and cell growth. Experimental Hematology, 23:1053–1061.

    PubMed  CAS  Google Scholar 

  7. Baumback, L., Marashi, F., Plumb, M., Stein, G.S., and Stein, J.L. (1984) Inhibition of DNA replication coordinately reduces cellular levels of core and H1 histone mRNAs: requirement for protein synthesis.Biochem 23, 1618–1625.

    Article  Google Scholar 

  8. Detke, S., Lichtler, A., Phillips, I., Stein, J., and Stein, G. (1979) Reassessment of histone gene expression during the cell cycle in human cells by using homologous H4 histone cDNA.Proc. Natl. Acad. Sci. USA76,4995–4999.

    Article  PubMed  CAS  Google Scholar 

  9. Plumb, M.A., Stein, J., and Stein, G. (1983) Coordinate regulation of multiple histone mRNAs during the cell cycle in HeLa cells.Nucl. Acids Res.112391–2410.

    Article  PubMed  CAS  Google Scholar 

  10. Plumb, M., Stein, J., and Stein, G. (1983) Influence of DNA synthesis inhibition on the coordinate expression of core human histone genes.Nucl. Acids Res.117927–7945.

    Article  PubMed  CAS  Google Scholar 

  11. van Wijnen, A.J., van den Ent, F.M.I., Lian, J.B., Stein, J.L., and Stein, G.S. (1992) Overlapping and CpG methylation-sensitive protein/DNA interactions at the histone H4 transcriptional cell cycle domain: distinctions between two human H4 gene promoters.Mol. Cell. Biol.123273–3287.

    PubMed  Google Scholar 

  12. van Wijnen, A.J., Wright, K.L., Lian, J.B., Stein, J.L., and Stein, G.S. (1989) Human H4 histone gene transcription requires the proliferation-specific nuclear factor HiNF-D.J. Biol. Chem.26415034–15042.

    PubMed  Google Scholar 

  13. Ramsey-Ewing, A., van Wijnen, A., Stein, G.S., and Stein, J.L. (1994) Delineation of a human histone H4 cell cycle element in vivo: the master switch for H4 gene transcription.Proc. Natl. Acad. Sci. USA 91, 4475–4479.

    Article  PubMed  CAS  Google Scholar 

  14. Pauli, U., Chrysogelos, S., Stein, J., Stein, G.S., and Nick, H. (1987) Protein-DNA interactions in vivo upstream of a cell cycle regulated human H4 histone gene.Science 236, 1308–1311.

    Article  PubMed  CAS  Google Scholar 

  15. van Wijnen, A.J., van Gurp, M.F., de Ridder, M., Tufarelli, C., Last, T.J., Birnbaum, M., Vaughan, P.S., Giordano, A., Krek, W., Neufeld, E.J., Stein, J.L., and Stein, G.S.CDP/cutis the DNA binding subunit of transcription factor HiNF-D (cyclin A, cdc2, RB-related complex): a non-E2F mechanism for histone gene regulation at the G1/S phase cell cycle transition point.Proc. Natl. Acad. Sci. USA, in press.

    Google Scholar 

  16. van Wijnen, A.J., Aziz, F., Grana, X., De Luca, A., Desai, R.K., Jaarsveld, K., Last, T.J., Soprano, K., Giordano, A., Lian, J.B., Stein, J.L., and Stein, G.S. (1994) Transcription of histone H4, H3 and HI cell cycle genes: promoter factor HiNF-D contains CDC2, cyclin A and an RB-related protein.Proc. Nail. Acad. Sci USA 91, 12882–12886.

    Article  Google Scholar 

  17. Vaughan, P.S., Aziz, F., van Wijnen, A.J., Wu, S., Harada, H., Taniguchi, T., Soprano, K., Stein, G.S., and Stein, J.L. (1995) Activation of a cell cycle regulated histone gene by the oncogenic transcription factor IRF2.Nature 377, 362–365.

    Article  PubMed  CAS  Google Scholar 

  18. van den Ent, F.M.I., van Wijnen, A.J., Lian, J.B., Stein, J.L., and Stein, G.S. (1994) Cell cycle controlled histone HI, H3 and H4 genes share unusual arrangements of recognition motifs for HiNFD supporting a coordinate promoter binding mechanism.J. Cell. Physiol.159515–530.

    Article  PubMed  Google Scholar 

  19. Dou, Q., Markell, P.J., and Pardee, A.B. (1992) Retinoblastoma-like protein and cdc2 kinase are in complexes that regulate a GI /S event.Proc. Natl. Acad. Sci USA 89, 3256–3260.

    Article  PubMed  CAS  Google Scholar 

  20. Lian, J.B. and Stein, G.S. (1996) Osteocalcin gene expression: a molecular blueprint for developmental and steroid hormone mediated regulation of osteoblast growth and differentiation.Endocrine Rev. in press.

    Google Scholar 

  21. Lian, J.B., Stewart, C., Puchacz, E., Mackowiak, S., Shalhoub, V., Collart, D., Zambetti, G., and Stein, G.S. (1989) Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression.Proc. Natl. Acad. Sci. USA 86, 1143–1147.

    Article  PubMed  CAS  Google Scholar 

  22. Towler, D.A., Bennett, C.D., and Rodan, G.A. (1994) Activity of the rat osteocalcin basal promoter in osteoblastic cells is dependent upon homeodomain and CPI binding motifs.Mol. Endocrinol.8614–624.

    Article  PubMed  CAS  Google Scholar 

  23. Kawaguchi, N., DeLuca, H.F., and Noda, M. (1992) Id gene expression and its suppression by 1,25dihydroxyvitamin D3 in rat osteoblastic osteosarcoma cells.Proc. Nall. Acad. Sci. USA 89, 4569–4572.

    Article  CAS  Google Scholar 

  24. Heinrichs, A.A.J., Banerjee, C., Bortell, R., Owen, T.A., Stein, J.L., Stein, G.S., and Lian, J.B. (1993) Identification and characterization of two proximal elements in the rat osteocalcin gene promoter that may confer species-specific regulation.J. Cell. Biochem.53240–250.

    Article  PubMed  CAS  Google Scholar 

  25. Heinrichs, A.A.J., Bortell, R., Bourke, M., Lian, J.B., Stein, G.S., and Stein, J.L. (1995) Proximal promoter binding protein contributes to developmental, tissue-restricted expression of the rat osteocalcin gene.J. Cell. Biochem.5790–100.

    Article  PubMed  CAS  Google Scholar 

  26. Stromstedt, P.E., Poellinger, L., Gustafsson, J.A., and Cralstedt-Duke, J. (1991) The glucocorticoid receptor binds to a sequence overlapping the TATA box of the human osteocalcin promoter: A potential mechanisms for negative regulation.Mol. and Cell. Biol.113379–3383.

    CAS  Google Scholar 

  27. Heinrichs, A.A.J., Bortell, R., Rahman, S., Stein, J.L., Alnemri, E.S., Litwack, G., Lian, J.B., and Stein, G.S. (1993) Identification of multiple glucocorticoid receptor binding sites in the rat osteocalcin gene promoter.Biochem.3211436–11444.

    Article  CAS  Google Scholar 

  28. Aslam, F., Shalhoub, V., van Wijnen, A.J., Banerjee, C., Bortell, R., Shakoori, A.R., Litwack, G., Stein, J.L., Stein, G.S., and Lian, J.B. (1995) Contributions of distal and proximal promoter elements to glucocorticoid regulation of osteocalcin gene transcription.Mol. Endocrinol.9679–690.

    Article  PubMed  CAS  Google Scholar 

  29. Towler, D.A. and Rodan, G.A. (1994) Cross-talk between glucocorticoid and PTH signaling in the regulation of the rat osteocalcin promoter. J.Bone Min. Res.9S282.

    Google Scholar 

  30. Morrison, N.A., Shine, J., Fragonas, J.C., Verkest, V., McMenemy, L., and Eisman, J.A. (1989) 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene.Science 246, 1158–1161.

    Article  PubMed  CAS  Google Scholar 

  31. Demay, M.B., Gerardi, J.M., DeLuca, H.F., and Kronenberg, H.M. (1990) DNA sequences in the rat osteocalcingenethat bind the I,25-dihydroxyvitamin D3 receptor and confer responsive to 1,25dihydroxyvitamin D3.Proc. Natl. Acad. Sci. USA87, 369–373.

    Article  PubMed  CAS  Google Scholar 

  32. Markose, E.R., Stein, J.L., Stein, G.S., and Lian, J.B. (1990) Vitamin D-mediated modifications in protein-DNA interactions at two promoter elements of the osteocalcin gene.Proc. Natl. Acad. Sci. USA 87,1701–1705.

    Article  PubMed  CAS  Google Scholar 

  33. Kerner, S.A., Scott, R.A., and Pike, J.W. (1989) Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3.Proc. Natl. Acad. Sci. USA 86, 4455–4459.

    Article  PubMed  CAS  Google Scholar 

  34. Terpening, C.M., Haussier, C.A., Jurutka, P.W., Galligan, M.A., Komm, B.S., and Haussier, M.R. (1991) The vitamin D-responsive element in the rat bone Gla protein gene is an imperfect direct repeat that cooperates with other cis-elements in 1,25-dihydroxyvitamin D3-mediated transcriptional activation.Mol. Endocrinol.5373–385.

    Article  PubMed  CAS  Google Scholar 

  35. Owen, T.A., Bortell, R., Yocum, S.A., Smock, S.L., Zhang, M., Abate, C., Shalhoub, V., Aronin, N., Wright, K.L., van Wijnen, A.J., Stein, J.L., Curran, T., Lian, J.B., and Stein, G.S. (1990) Coordinate occupancy of AP-1 sites in the vitamin D responsive and CCAAT box elements by fos-jun in the osteocalcin gene: a model for phenotype suppression of transcription.Proc. Nail. Acad. Sci. USA 87, 9990–9994.

    Article  CAS  Google Scholar 

  36. Guo, B., Odgren, P.R., van Wijnen, A.J., Last, T.J., Fey, E.G., Penman, S., Stein, J.L., Lian, J.B., and Stein, G.S. (1995) The nuclear matrix protein NMP-1 is the transcription factor YY-1.Proc. Natl. Acad. Sci. USA 92, 10526–10530.

    Article  PubMed  CAS  Google Scholar 

  37. Guo, B., Aslam, F., van Wijnen, A., Roberts, S.G.E., Frenkel, B., Green, M., DeLuca, H., Lian, J.B., Stein, G.S., Stein, J.L. YY1 regulates VDR/RXR mediated transactivation of the vitamin D responsive osteocalcin gene. Manuscript submitted.

    Google Scholar 

  38. Kuno, H., Kurian, S.M., Hendy, G.N., White, J., DeLuca, H.F., Evans, C-O., and Nanes, M.S. (1994) Inhibition of 1,25-dihydroxyvitamin D3 stimulated osteocalcin gene transcription by tumor necrosis factor-ix: Structural determinants within the vitamin D response element.Endocrinol.1342524–2531.

    Article  CAS  Google Scholar 

  39. Scule, R., Umesono, K., Mangelsdorf, D.J., Bolado, J., Pike, J.W., and Evans, R.M. (1990) Jun-Fos and receptors for vitamins A and D recognize a common response element in the human osteocalcin gene.Cell 61, 497–504.

    Article  Google Scholar 

  40. Bortell, R., Owen, T.A., Shalhoub, V., Heinrichs, A., Aronow, M.A.B., and Stein, G.S. (1993) Constitutive transcription of the osteocalcin gene in osteosarcoma cells is reflected by altered protein-DNA interactions at promoter regulatory elements.Proc. Natl. Acad. Sci. USA 90, 2300–2304.

    Article  PubMed  CAS  Google Scholar 

  41. Schrader, M., Bendik, I., Becker-Andre, M., and Carlberg, C. (1993) Interaction between retinoic acid and vitamin D signaling pathways.J. Bio. Chem.26817830–17836.

    CAS  Google Scholar 

  42. MacDonald, P.N., Dowd, D.R., Nakajima, S., Galligan, M.A., Reeder, M.C., Haussier, C.A., Ozato, K., and Haussier, M.R. (1993) Retinoid X Receptors stimulate and9-cisretinoic acid inhibits 1,25dihydroxyvitamin D3-activated expression of the rat osteocalcin gene.Mol. Cell. Biol.13, 5907–5917.

    PubMed  CAS  Google Scholar 

  43. Kliewer, S.A., Umesono, K., Mangelsdorf, D.J., and Evans, R.M. (1992) Retinoic X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone an vitamin D signaling.Nature 355, 441–446.

    Article  Google Scholar 

  44. Li, Y. and Stashenko, P. (1993) Characterization of a tumor necrosis factor-responsive element which down-regulates the human osteocalcin gene.Molec. & Cell. Biol.133714–3721.

    CAS  Google Scholar 

  45. Ozono, K., Sone, T., and Pike, J.W. (1991) The genomic mechanism of action of 1,25-dihydroxyvitamin D3. J.Bone Min. Res.61021–1027.

    Article  CAS  Google Scholar 

  46. Lian, J.B., Stein, G.S., Bortell, R., and Owen, T.A. (1991) Phenotype suppression: a postulated molecular mechanism for mediating the relationship of proliferation and differentiation by fos/jun interactions at AP-1 sites in steroid responsive promoter elements of tissue-specific genes.J. Cell. Biochem.459–14.

    Article  PubMed  CAS  Google Scholar 

  47. Demay, M.B., Kiernan, M.S., DeLuca, H.F., and Kronenberg, H.M. (1992) Characterization of 1,25-dihydroxyvitamin D3 receptor interactions with target sequences in the rat osteocalcin gene.Molec. Endocrinol. 6, 557–562.

    Article  CAS  Google Scholar 

  48. McCabe, L.R., Kockx, M., Lian, J.B., Stein, J.L., and Stein, G.S. (1995) Selective expression of FOS&JUN related genes during osteoblast proliferation and differentiation.Exp. Cell Res.218, 255–262.

    Article  PubMed  CAS  Google Scholar 

  49. McCabe, L.R., Banerjee, C., Kundu, R., Harrison, R.J., Dobner, P.R., Stein, J.L., Lian, J.B., and Stein, G.S. (1996) Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation: role of fra-2 and jun-D during differentiation.Endocrinologyin press.

    Google Scholar 

  50. Lian, J.B. and Stein, G.S. (1993) Proto-oncogene mediated control of gene expression during osteoblast differentiation.Ital. J. Min. Elect. Metab.7175–83.

    CAS  Google Scholar 

  51. Banerjee, C., Stein, J.L., van Wijnen, A.J., Frenkel, B., Lian, J.B., and Stein, G.S. (1996) TGF-131 responsiveness of the rat osteocalcin gene is mediated by an AP-1 binding site.Endocrinology 1371991–2000.

    Article  PubMed  CAS  Google Scholar 

  52. Tamura, M. and Noda, M. (1994) Identification of a DNA sequence involved in osteoblast-specific gene expression via interaction with helix-loop-helix (HLH)-type transcription factors.J. Cell. Biol.126773–782.

    Article  PubMed  CAS  Google Scholar 

  53. Hoffmann, H.M., Catron, K.M., van Wijnen, A.J., McCabe, L.R., Lian, J.B., Stein, G.S., and Stein, J.L. (1994) Transcriptional control of the tissue-specific developmentally regulated osteocalcin gene requires a binding motif for the MSX-family of homeodomain proteins.Proc. Natl. Acad. Sci. USA 91, 12887–12891.

    Article  PubMed  CAS  Google Scholar 

  54. Merriman, H.L., van Wijnen, A.J., Hiebert, S., Bidwell, J.P., Fey, E., Lian, J.B., Stein, J.L., and Stein, G.S. (1995) The tissue-specific nuclear matrix protein, NMP-2, is a member of the AML/PEBP2/runtdomaintranscription factor family: interactions with the osteocalcin gene promoter.Biochemistry 34, 13125–13132.

    Article  PubMed  CAS  Google Scholar 

  55. van Wijnen, A.J., Merriman, H., Guo, B., Bidwell, J.P., Stein, J.L., Lian, J.B., and Stein, G.S. (1994) Nuclear matrix interactions with the osteocalcin gene promoter: multiple binding sites for the runt-homology related protein NMP-2 and for NMP-1, a heteromeric CREB-2 containing transcription factor.J. Bone Min. Res.9S148.

    Google Scholar 

  56. Banerjee, C., Hiebert, S.W., Stein, J.L., Lian, J.B., and Stein, G.S. (1996) An AML-1 consensus sequence binds an osteoblast-specific complex and transcriptionally activates the osteocalcin gene.Proc. Natl. Acad. Sci. USA 934968–4973.

    Article  PubMed  CAS  Google Scholar 

  57. Geoffroy, V., Ducy, P., and Karsenty, G. (1995) A PEBP2a/AML-1-related factor increases osteocalcin promoter activity through its binding to an osteoblast-specific cis-acting element.J. Biol. Chem.,27030973–30979.

    Article  PubMed  CAS  Google Scholar 

  58. Lufkin, T., Mark, M., Hart, C.P., LeMeur, M., and Chambon, P. (1992) Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene.Nature 359, 835–841.

    Article  PubMed  CAS  Google Scholar 

  59. Ryoo, H.-M., Stein, J.L., Lian, J.B., Stein, G.S. Detection of a proliferation specific gene during development of the osteoblast phenotype by mRNA differential display. J. Cell. Biochem., in press.

    Google Scholar 

  60. Krumlauf, R. (1993)Hoxgenes and pattern formation in the branchial region of the vertebrate head.Trends in Genetics 9, 106–112.

    Article  PubMed  CAS  Google Scholar 

  61. Gruss, P. and Walther, C. (1992) Pax in development.Cell 69, 719–722.

    Article  PubMed  CAS  Google Scholar 

  62. Tabin, C.J. (1991) Retinoids, homeoboxes, and growth factors: towards molecular models for limb development.Cell 66, 199–217.

    Article  PubMed  CAS  Google Scholar 

  63. Niehrs, C. and DeRobertis, E.M. (1992) Vertebrate axis formation.Current Opinion in Genetics and Dey.2550–555.

    Article  CAS  Google Scholar 

  64. McGinnis, W. and Krumlauf, R. (1992) Homeobox genes and axial patterning.Cell 68, 283–302.

    Article  PubMed  CAS  Google Scholar 

  65. Simeone, A., Acampora, D., Pannese, M., D’Esposito, M., Stornaiuolo, A., Gulisano, M., Mallamaci, A., Kastury, K., Druck, T., Huebner, K., and Boncinelli, E. (1994) Cloning and characterization of two new members of the vertebrate Dix family.Proc. Natl. Acad. Sci. USA 91, 2250–2254.

    Article  PubMed  CAS  Google Scholar 

  66. Cohen, S.M., Broner, G., Kuttner, F., Jurgens, G., and Jackie, H. (1989)Distal-lessencodes a homeodomain protein required for limb development inDrosophila.Nature 338, 432–434.

    Article  PubMed  CAS  Google Scholar 

  67. Yoon, K., Rutledge, S.J.C., Buenaga, R.F., and Rodan, G.A. (1988) Characterization of the rat osteocalcingene:stimulation of promoter activity by 1,25-dihydroxyvitamin D3.Biochem.17, 8521–8526.

    Google Scholar 

  68. Bortell, R., Owen, T.A., Bidwell, J.P., Gavazzo, P., Breen, E., van Wijnen, A.J., DeLuca, H.F., Stein, J.L., Lian, J.B., and Stein, G.S. (1992) Vitamin D-responsive protein-DNA interactions at multiple promoter regulatory elements that contribute to the level of rat osteocalcin gene expression.Proc. Natl. Acad. Sci. USA 89, 6119–6123.

    Article  PubMed  CAS  Google Scholar 

  69. Morrison, N. and Eisman, J. (1993) Role of the negative glucocorticoid regulatory element in glucocorticoid repression of the human osteocalcin promoter.J. Bone Miner. Res.8969–975.

    Article  PubMed  CAS  Google Scholar 

  70. Aslam, F., Lian, J.B., Stein, G.S., Stein, J.L., Litwack, G., van Wijnen, A.J., and Shalhoub, V. (1994) Glucocorticoid responsiveness of the osteocalcin gene by multiple distal and proximal elements.J. Bone Min. Res.9S125.

    Google Scholar 

  71. Owen, T.A., Bortell, R., Shalhoub, V., Heinrichs, A., Stein, J.L., Stein, G.S., and Lian, J.B. (1993) Postproliferative transcription of the rat osteocalcin gene is reflected by vitamin D-responsive developmental modifications in protein-DNA interactions at basal and enhancer promoter elements.Proc. Natl. Acad. Sci. USA 90, 1503–1507.

    Article  PubMed  CAS  Google Scholar 

  72. Nanes, M.S., Rubin, J., Titus, L., Hendy, G.N., and Catherwood, B.D. (1991) Tumor necrosis factor alpha inhibits 1,25-dihydroxyvitamin D3-stimulated bone gla protein synthesis in rat osteosarcoma cells (ROS 17/2.8) by a pretranslational mechanism.Endocrinol.1282577–2582.

    Article  CAS  Google Scholar 

  73. Taichman, R.S. and Hauschka, P.V. (1992) Effects of interleukin-1 beta and tumor necrosis factor-alpha on osteoblastic expression of osteocalcin and mineralized extracellular matrix in vitro.J. Inflam.16(6)587–601.

    Article  CAS  Google Scholar 

  74. Li, Y. and Stashenko, P. (1992) Proinflammatory ?ytokines tumor necrosis factor and IL-6, but not IL-1, down-regulate the osteocalcin gene promoter.J. of Immun.148788–794.

    CAS  Google Scholar 

  75. Evans, D.B., Thavarajah, M., and Kanis, J.A. (1990) Involvement of prostaglandin E2 in the inhibition of osteocalcin synthesis by human osteoblast-like cells in response to cytokines and systemic hormones.Biochem. Biophys. Res. Comm.167194–202.

    Article  PubMed  CAS  Google Scholar 

  76. Naves, M.S., Rubin, J., Titus, L., Hendy, G.N., and Catherwood, B.D. (1990) Interferon-y inhibits 1,25-dihydroxyvitamin D3-stimulated synthesis of bone Gla protein in rat osteosacoma cells by a pretranslational mechanism.Endocrinol.127588–594.

    Article  Google Scholar 

  77. Guidon, P.T., Salvatori, R., and Bockman, R.S. (1993) Gallium nitrate regulates rat osteoblast expression of osteocalcin protein and mRNA levels.J. Bone Min. Res.8103–110.

    Article  CAS  Google Scholar 

  78. Jenis, L.G., Waud, C.E., Stein, G.S., Lian, J.B., and Baran, D.T. (1993) Effect of gallium nitrate in vitro and in normal rats.J. Cell. Biochem.52330–336.

    Article  PubMed  CAS  Google Scholar 

  79. Vaishnav, R., Beresford, J.N., Gallagher, J.A., and Russell, R.G.G. (1988) Effects of the anabolic steroid stanozolol on cells derived from human bone.Clin. Sci.74455–460.

    PubMed  CAS  Google Scholar 

  80. Fanti, P., Kindy, M.S., Mohapatra, S., Klein, J., Colombo, G., and Malluche, H.H. (1992) Dose-dependent effects of aluminum on osteocalcin synthesis in osteoblast-like ROS 17/2 cells in culture.Amer. J. Physio.263El113–8.

    Google Scholar 

  81. Schedlich, L.J., Flanagan, J.L., Crofts, L.A., Gillies, S.A., Goldberg, D., Morrison, N.A., and Eisman, J.A. (1994) Transcriptional activation of the human osteocalcin gene by basic fibroblast growth factor.J. Bone Min. Res.9143–152.

    Article  CAS  Google Scholar 

  82. Kroeger, P., Stewart, C., Schaap, T., van Wijnen, A., Hirshman, J., Helms, S., Stein, G.S., and Stein, J.L. (1987) Proximal and distal regulatory elements that influence in vivo expression of a cell cycle dependent H4 histone gene.Proc. Natl. Acad. Sci. USA 84, 3982–3986.

    Article  PubMed  CAS  Google Scholar 

  83. Wright, K.L., Dell’Orco, R.T., van Wijnen, A.J., Stein, J.L., and Stein, G.S. (1992) Multiple mechanisms regulate the proliferation specific histone gene transcription factor, HiNF-D, in normal human diploid fibroblasts.Biochem.312812–2818.

    Article  CAS  Google Scholar 

  84. Wright, K.L., Birnbaum, M.J., van Wijnen, A., Stein, G.S. and Stein, J.L. (1995) Bipartite structure of the proximal promoter of a human H4 histone gene.J. Cell. Biochem.58372–379.

    Article  PubMed  CAS  Google Scholar 

  85. Moreno, M.L., Chrysogelos, S.A., Stein, G.S., and Stein, J.L. (1986) Reversible changes in the nucleosomal organization of a human H4 histone gene during the cell cycle.Biochemistry 25, 5364–5370.

    Article  PubMed  CAS  Google Scholar 

  86. Moreno, M.L., Stein, G.S., and Stein, J.L. (1987) Nucleosomal organization of a BPV minichromosome containing a human H4 histone gene.Mol. Cell. Biochem.74173–177.

    Article  PubMed  CAS  Google Scholar 

  87. Chrysogelos, S., Riley, D.E., Stein, G.S., and Stein, J.L. (1985) A human histone H4 gene exhibits cell cycle-dependent changes in chromatin structure that correlate with its expression.Proc. Nail. Acad. Sci. USA 82, 7535–7539.

    Article  CAS  Google Scholar 

  88. Chrysogelos, S., Pauli, U., Stein, G., and Stein, J. (1989) Fine mapping of the chromatin structure of a cell cycle-regulated human H4 histone gene.J. Biol. Chem.2641232–1237.

    PubMed  CAS  Google Scholar 

  89. Dworetzky, S.I., Wright, K.L., Fey, E.G., Penman, S., Lian, J.B., Stein, J.L., and Stein, G.S. (1992) Sequence-specific DNA binding proteins are components of a nuclear matrix attachment site.Proc. Nail. Acad. Sci. USA 89, 4178–4182.

    Article  CAS  Google Scholar 

  90. Dworetzky, S.I., Fey, E.G., Penman, S., Lian, J.B., Stein, J.L., and Stein, G.S. (1990) Progressive changes in the protein composition of the nuclear matrix during rat osteoblast differentiation.Proc. Natl. Acad. Sci. USA 87,4605–4609.

    Article  PubMed  CAS  Google Scholar 

  91. Montecino, M., Pockwinse, S., Lian, J.B., Stein, G.S., and Stein, J.L. (1994) DNase I hypersensitive sites in promoter elements associated with basal and vitamin D dependent transcription of the bone-specific osteocalcin gene.Biochemistry 33, 348–353.

    Article  PubMed  CAS  Google Scholar 

  92. Montecino, M., Lian, J.B., Stein, G.S., and Stein, J.L. (1994) Specific nucleosomal organization supports developmentally regulated expression of the osteocalcin gene.J. Bone Min. Res.9S352.

    Google Scholar 

  93. Breen, E.C., van Wijnen, A.J., Lian, J.B., Stein, G.S., and Stein, J.L. (1994) In Vivo Occupancy of the Vitamin D Responsive Element in the Osteocalcin Gene Supports Vitamin D Dependent Transcriptional Upregulation in Intact Cells.Proc. Natl. Acad. Sci. USA 91, 12902–12906.

    Article  PubMed  CAS  Google Scholar 

  94. Montecino, M., Lian, J.B., Stein, G.S., and Stein, J.L. Changes in chromatin structure support constitutive and developmentally regulated transcription of the bone specific osteocalcin gene in osteoblastic cells. Manuscript submitted.

    Google Scholar 

  95. Bidwell, J.P., van Wijnen, A.J., Fey, E.G., Dworetzky, S., Penman, S., Stein, J.L., Lian, J.B., and Stein, G.S. (1993) Osteocalcin gene promoter-binding factors are tissue-specific nuclear matrix components.Proc. Natl. Acad. Sci. USA 90, 3162–3166.

    Article  PubMed  CAS  Google Scholar 

  96. Blanco, J.C.G., Wang, I.-M., Tsai, S.Y., Tsai, M.-J., O’Malley, B.W., Jurutka, P.W., Haussier, M.R., and Ozato, K. (1995) Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription.Proc. Nall. Acad. Sci. USA 92, 1535–1539.

    Article  CAS  Google Scholar 

  97. MacDonald, P.N., Sherman, D.R., Dowd, D.R., Jefcoat, S.C.Jr., and DeLisle, R.K. (1995) The vitamin D receptor interacts with general transcription factor IIB.J. Biol. Chem.2704748–4752.

    Article  PubMed  CAS  Google Scholar 

  98. Pardoll, D.M., Vogelstein, B., and Coffey, D.S. (1980) A fixed site of DNA replication in eukaryotic cells.Cell 19, 527–536.

    Article  PubMed  CAS  Google Scholar 

  99. Belgrader, P., Siegel, A.J., and Berezney, R. (1991) A comprehensive study on the isolation and characterization of the HeLa S3 nuclear matrix.J. Cell Sci.98281–291.

    PubMed  CAS  Google Scholar 

  100. Berezney, R. and Coffey, D.S. (1974) Identification of a nuclear protein matrix.Biochem. Biophys. Res. Commun.601410–1417.

    Article  PubMed  CAS  Google Scholar 

  101. Berezney, R. and Coffey, D.S. (1975) Nuclear protein matrix: association with newly synthesized DNA.Science 189, 291–292.

    Article  PubMed  CAS  Google Scholar 

  102. Berezney, R. and Coffey, D.S. (1977) Nuclear matrix: isolation and characterization of a framework structure from rat liver nuclei.J. Cell Biol.73616–637.

    Article  PubMed  CAS  Google Scholar 

  103. Vaughn, J.P., Dijkwel, P.A., Mullenders, L.H.F., and Hamlin, J.L. (1990) Replication forks are associated with the nuclear matrix.Nucl. Acids Res.181965–1969.

    Article  PubMed  CAS  Google Scholar 

  104. Jackson, D.A. and Cook, P.R. (1986) Replication occurs at a nucleoskeleton.EMBO J.51403–1410.

    PubMed  CAS  Google Scholar 

  105. Nakayasu, H. and Berezney, R. (1989) Mapping replicational sites in the eukaryotic nucleus.J. Cell Biol.1081–11.

    Article  PubMed  CAS  Google Scholar 

  106. Fey, E.G., Krochmalnic, G., and Penman, S. (1986) The nonchromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy.J. Cell Biol.1021654–1665.

    Article  PubMed  CAS  Google Scholar 

  107. Fey, E.G. and Penman, S. (1988) Nuclear matrix proteins reflect cell type of origin in cultured human cells.Proc. Natl. Acad. Sci. USA 85, 121–125.

    Article  PubMed  CAS  Google Scholar 

  108. Fey, E., Bangs, P., Sparks, C., and Odgren, P. (1991) The nuclear matrix: defining structural and functional roles.Crit. Rev. Eukaryotic Gene Exp.1127–143.

    CAS  Google Scholar 

  109. Pienta, K.J., Getzenberg, R.H., and Coffey, D.S. (1991) Cell structure and DNA organization.Crit. Rev. Eukaryotic Gene Exp.1355–385.

    CAS  Google Scholar 

  110. He, D., Nickerson, J.A., and Penman, S. (1990) Core filaments of the nuclear matrix.J. Cell Biol.110569.

    Article  PubMed  CAS  Google Scholar 

  111. Capco, D.G., Wan, K.M., and Penman, S. (1982) The nuclear matrix: three-dimensional architecture and protein composition.Cell 29, 847–858.

    Article  PubMed  CAS  Google Scholar 

  112. Nickerson, J.A., Krockmalnic, G., He, D., and Penman, S. (1990) Immunolocalization in three dimensions: immunogold staining of cytoskeletal and nuclear matrix proteins in resinless electron microscopy sections.Proc. Natl. Acad. Sci. USA 87, 2259–2263.

    Article  PubMed  CAS  Google Scholar 

  113. Bidwell, J.P., Fey, E.G., van Wijnen, A.J., Penman, S., Stein, J.L., Lian, J.B., and Stein, G.S. (1994) Nuclear matrix proteins distinguish normal diploid osteoblasts from osteosarcoma cells.Cancer Research 54, 28–32.

    PubMed  CAS  Google Scholar 

  114. Getzenberg, R.H. and Coffey, U.S. (1991) Identification of nuclear matrix proteins in the cancerous and normal rat prostate.Cancer Res.516514–6520.

    PubMed  CAS  Google Scholar 

  115. Pienta, K.J. and Coffey, D.S. (1991) Correlation of nuclear morphometry with progression of breast cancer.Cancer 68, 2012–2016.

    Article  PubMed  CAS  Google Scholar 

  116. Barrack, E.R. and Coffey, D.S. (1983) Hormone receptors and the nuclear matrix, in A.K. Roy and J.H. Clark (eds.)Gene Regulation by Steroid Hormones IISpringer-Verlag, New York, NY, pp. 239–266.

    Chapter  Google Scholar 

  117. Kumara-Siri, M.H., Shapiro, L.E., and Surks, M.I. (1986) Association of the 3,5,3’-triiodo-L- thyronine nuclear receptor with the nuclear matrix of cultured growth hormone-producing rate pituitary tumor cells (GC cells).J. Biol. Chem.2612844–2852.

    PubMed  CAS  Google Scholar 

  118. Getzenberg, R.H. and Coffey, D.S. (1990) Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.Mol. Endocrinol.41336–1342.

    Article  PubMed  CAS  Google Scholar 

  119. Bidwell, J.P., van Wijnen, A.J., Banerjee, C., Fey, E.G., Merriman, H., Penman, S., Stein, J.L., Lian, J.B., and Stein, G.S. (1994) PTH-responsive modifications in the nuclear matrix of ROS 17/2.8 rat osteosarcoma cells.Endocrinology 134, 1738–1744.

    Article  PubMed  CAS  Google Scholar 

  120. Nelkin, B.D., Pardoll, D.M., and Vogelstein, B. (1980) Localization of SV40 genes with supercoiled loop domains.Nucl. Acids Res.85623–5633.

    Article  PubMed  CAS  Google Scholar 

  121. Robinson, S.I., Nelkin, B.D., and Vogelstein, B. (1982) The ovalbumin gene is associated with the nuclear matrix of chicken oviduct cells.Cell 28, 99–106.

    Article  PubMed  CAS  Google Scholar 

  122. Schaack, J., Ho, W.Y.-W., Friemuth, P., and Shenk, T. (1990) Adenovirus terminal protein mediates both nuclear-matrix association and efficient transcription of adenovirus DNA.Genes Dey.41197–1208.

    Article  CAS  Google Scholar 

  123. Stief, A., Winter, D.M., Strafing, W.H., and Sippel, A.E. (1989) A nuclear attachment element mediates elevated and position-independent gene activity.Nature 341, 343–345.

    Article  PubMed  CAS  Google Scholar 

  124. Bode, J. and Maass, K. (1988) Chromatin domain surrounding the human interferon-(3 gene as defined by scaffold-attached regions.Biochemistry 27, 4706–4711.

    Article  PubMed  CAS  Google Scholar 

  125. Ciejek, E.M., Tsai, M.-J., and O’Malley, B.W. (1983) Actively transcribed genes are associated with the nuclear matrix.Nature 306, 607–609.

    Article  PubMed  CAS  Google Scholar 

  126. Cockerill, P.N. and Garrard, W.T. (1986) Chromosomal loop anchorage of the kappa immuno-globulin gene occurs next to the enhancer in a region containing topoisomerase Il sites.Cell 44, 273–282.

    Article  PubMed  CAS  Google Scholar 

  127. Gasser, S.M. and Laemmli, U.K. (1986) Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster.Cell 46, 521–530.

    Article  PubMed  CAS  Google Scholar 

  128. Jackson, D.A. and Cook, P.R. (1985) Transcription occurs at a nucleoskeleton.EMBO J.4919–925.

    PubMed  CAS  Google Scholar 

  129. Jarman, A.P. and Higgs, D.R. (1988) Nuclear scaffold attachment sites in the human globin gene complexes.EMBO J. 73337–3344.

    PubMed  CAS  Google Scholar 

  130. Kas, E. and Chasin, L.A. (1987) Anchorage of the chinese hamster dihydrofolate reductase gene to the nuclear scaffold occurs in an intragenic region.J. Mol. Biol.198677–692.

    Article  PubMed  CAS  Google Scholar 

  131. Keppel, F. (1986) Transcribed human ribosomal RNA genes are attached to the nuclear matrix.J. Mol. Biol.18715–21.

    Article  PubMed  CAS  Google Scholar 

  132. Mirkovitch, J., Mirault, M-.E. and Laemmli, U.K. (1984) Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold.Cell 39, 223–232.

    Article  PubMed  CAS  Google Scholar 

  133. Phi-Van, L., Von Kries, J.P., Ostertag, W., and Stratling, W.H. (1990) The chicken lysozyme 5’ matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens positional effects on the expression of transfected genes.Mol. Cell Biol.102302–2307.

    PubMed  CAS  Google Scholar 

  134. Phi-Van, L., and Stratling, W.H. (1988) The matrix attachment regions of the chicken lysozyme gene co-map with the boundaries of the chromatin domain.EMBO J.7655–664.

    CAS  Google Scholar 

  135. Thorburn, A., Moore, R., and Knowland, J. (1988) Attachment of transcriptionally active sequences to the nucleoskeleton under isotonic conditions.Nucl. Acids. Res.167183.

    Article  PubMed  CAS  Google Scholar 

  136. Farache, G., Razin, S.V., Rzeszowska-Wolny, J., Moreau, J., Targa, F.R., and Scherrer, K. (1990) Mapping of structural and transcription-related matrix attachment sites in the a-globin gene domain of avian erythroblasts and erythrocytes.Mol. Cell. Biol.105349–5358.

    PubMed  CAS  Google Scholar 

  137. De Jong, L., van Driel, R., Stuurman, N., Meijne, A.M.L., and van Renswoude, J. (1990) Principles of nuclear organization.Cell Biol. Int. Rep.141051–1074.

    Article  PubMed  Google Scholar 

  138. Jackson, D.A. (1991) Structure-function relationships in eukaryotic nuclei.BioEssays 13, 1–10.

    Article  PubMed  CAS  Google Scholar 

  139. Mirkovitch, J., Gasser, S.M., and Laemmli, U.K. (1988) Scaffold attachment of DNA loops in metaphase chromosomes.J. Mol. Biol.200101–109.

    Article  PubMed  CAS  Google Scholar 

  140. Nelson, W.G., Pienta, K.J., Barrack, E.R., and Coffey, D.S. (1986) The role of the nuclear matrix in the organization and function of DNA.Nucl. Acids Res.146433–6451.

    Article  Google Scholar 

  141. Targa, F.R., Razin, S.V., de Moura Gallo, C.V., and Scherrer, K. (1994) Excision close to matrix attachment regions of the entire chicken alpha-globin gene domain by nuclease Si and characterization of the framing structures.Proc. Natl. Acad. Sci. USA 91, 4422–4426.

    Article  PubMed  CAS  Google Scholar 

  142. Kay, V. and Bode, J. (1994) Binding specificity of a nuclear scaffold: supercoiled, single-stranded, and scaffold-attached-region DNA.Biochem.33367–374.

    Article  CAS  Google Scholar 

  143. Dietz, A., Kay, V., Schlake T., Landsmann, J., and Bode, J. (1994) A plant scaffold attached region detected close to a T-DNA integration site is active in mammalian cells.Nucl. Acids Res.222744–2751.

    Article  PubMed  CAS  Google Scholar 

  144. Klehr, D., Maass, K., and Bode, J. (1991) Scaffold-attached regions from the human interferon beta domain can be used to enhance the stable expression of genes under the control of various promoters.Biochem.301264–1270.

    Article  CAS  Google Scholar 

  145. von Kries, J.P., Buhrmester, H., and Stratling, W.H. (1991) A matrix/scaffold attachment region binding mprotein: identification, purification and mode of binding.Cel1 64, 123–135.

    Article  Google Scholar 

  146. von Kries, J.P., Buck, F., and Stratling, W.H. (1994) Chicken MAR binding protein p120 is identical to human heterogeneous nuclear ribonucleoprotein (hnRNP]U).Nucl. Acids Res.221215–1220.

    Article  Google Scholar 

  147. Buhrmester, H., von Kries, J.P., and Strätling (1995) Nuclear matrix protein ARBP recognizes a novel DNA sequence motif with high affinity.Biochem.344108–4117.

    Article  CAS  Google Scholar 

  148. Nakagomi, K., Kohwi, Y., Dickinson, L.A., and Kohwi-Shigematsu, T. (1994) A novel DNA- binding motif in the nuclear matrix attachment DNA-binding protein SATB1.Mol. Cell Biol.141852–1860.

    PubMed  CAS  Google Scholar 

  149. Fishel, B.R., Sperry, A.O., and Garrard, W.T. (1993) Yeast calmodulin and a conserved nuclear protein participate in the in vivo binding of a matrix association region.Proc. Nall. Acad. Sci. USA 90,5623–5627.

    Article  CAS  Google Scholar 

  150. Tsutsui, K., Tsutsui, K., Okada, S., Watarai, S., Seki, S., Yasuda, T., and Shohmori, T. (1993) Identification and characterization of a nuclear scaffold protein that binds the matrix attachment region DNA.J. Biol. Chem.26812886–12894.

    PubMed  CAS  Google Scholar 

  151. Dickinson, L.A., Joh, T., Kohwi, Y., and Kohwi-Shigematsu, T. (1992) A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition.Cell 70, 631–645.

    Article  PubMed  CAS  Google Scholar 

  152. Dickinson, L.A. and Kohwi-Shigematsu, T. (1995) Nucleolin is a matrix attachment region DNA- binding protein that specifically recognizes a region with high base-unpairing potential.Mol. Cell Biol.15456–465.

    PubMed  CAS  Google Scholar 

  153. Hakes, D.J. and Berezney, R. (1991) Molecular cloning of matrn F/G: a DNA binding protein of the nuclear matrix that contains putative zinc finger motifs.Proc. Natl. Acad. Sci. USA 88, 6186–6190.

    Article  PubMed  CAS  Google Scholar 

  154. Cunningham, J.M., Purucker, M.E., Jane, S.M., Safer, B., Vanin, E.F., Ney, P.A., Lowrey, C.H., Nienhuis, A.W. (1994) The regulatory element 3’ to the A gamma-globin gene binds to the nuclear matrix and interacts with special A-T-rich binding protein 1 (SATB1), an SAR/MAR-associating region DNA binding protein.Blood 84, 1298–1308.

    PubMed  CAS  Google Scholar 

  155. Landers, J.P. and Spelsberg, T.C. (1992) New concepts in steroid hormone action: transcription factors, proto-oncogenes, and the cascade model for steroid regulation of gene expression.Crit. Rev. Eukaryotic Gene Expression 2, 19–63.

    CAS  Google Scholar 

  156. van Steensel, B., Jenster, G., Damm, K., Brinkmann, A.O., and van Driel, R. (1995) Domains of the human androgen receptor and glucocorticoid receptor involved in binding to the nuclear matrix.J. Cell. Biochem.57465–478.

    Article  PubMed  Google Scholar 

  157. Zenk, D.W., Ginder, G.D., and Brotherton, T.W. (1990) A nuclear-matrix protein binds very tightly to DNA in the avian 13-globin gene enhancer.Biochemistry 29, 5221–5226.

    Article  PubMed  CAS  Google Scholar 

  158. Abulafia, R., Ben-Ze’Ev, A., Hay, N., and Aloni, Y. (1984) Control of late SV40 transcription by the attenuation mechanism and transcriptionally active ternary complexes are associated with the nuclear matrix.J. Mol. Biol.172467–487.

    Article  PubMed  CAS  Google Scholar 

  159. van Wijnen, A.J., Bidwell, J.P., Fey, Edward G., Penman, S., Lian, J.B., Stein, J.L., and Stein, G.S. (1993) Nuclear matrix association of multiple sequence specific DNA binding activities related to SP-1, ATF, CCAAT, C/EBP, OCT-1 and AP-1.Biochemistry 32, 8397–8402.

    Article  PubMed  Google Scholar 

  160. van Eeklen, C.A.G. and van Venrooij, W.J. (1981) hnRNA and its attachment to a nuclear-protein matrix.J. Cell Biol.88554–563.

    Article  Google Scholar 

  161. Zeitlin, S., Parent, A., Silverstein, S., and Efstratiadis, A. (1987) Pre-mRNA splicing and the nuclear matrix.Mol. Cell. Biol.7111–120.

    PubMed  CAS  Google Scholar 

  162. Nickerson, J.A. and Penman, S. (1992) The nuclear matrix: structure and involvement in gene expression, in G.S. Stein and J.B. Lian (eds.)Molecular and Cellular Approaches to the Control of Proliferation and DifferentiationAcademic Press, San Diego, pp. 434–380.

    Google Scholar 

  163. Xing, Y., Johnson, C.V., Dobner, P.R., and Lawrence, J.B. (1993) Higher level organization of individual gene transcription and RNA splicing.Science 259, 1326–1330.

    Article  PubMed  CAS  Google Scholar 

  164. Ben-Ze’Ev, A. and Aloni, Y. (1983) Processing of SV40 RNA is associated with the nuclear matrix and is not followed by the accumulation of low-molecular weight RNA products.Virology 125, 475–479.

    Article  PubMed  Google Scholar 

  165. Mariman, E.C.M., van Eekelen, C.A.G., Reinders, J., Berns, A.J.M., and van Venrooij, W.J. (1982) Adenoviral heterogenous nuclear RNA is associated with the host nuclear matrix during splicing.J. Mol. Biol.154103–119.

    Article  PubMed  CAS  Google Scholar 

  166. Ross, D.A., Yen, R.W., and Chae, C.B. (1982) Association of globin ribonucleic acid and its precursors with the chicken erythroblast nuclear matrix.Biochemistry 21, 764–771.

    Article  PubMed  CAS  Google Scholar 

  167. Schroder, H.C., Trolltsch, D., Friese, U., Bachmann, M., and Muller, W.E.G. (1987) Mature mRNA is selectively released from the nuclear matrix by an ATP/dATP-dependent mechanism sensitive to topoisomerase inhibitors.J. Biol. Chem.2628917–8925.

    PubMed  CAS  Google Scholar 

  168. Schroder, H.C., Trolltsch, D., Wenger, R., Bachmann, M., Diehl-Seifert, B., and Muller, W.E.G. (1987) Cytochalasin B selectively releases ovalbumin mRNA precursors but not the mature ovalbumin mRNA from hen oviduct nuclear matrix.Eur. J. Biochem.167239–245.

    Article  PubMed  CAS  Google Scholar 

  169. Jackson, D.A., McCready, S.J., and Cook, P.R. (1981) RNA is synthesized at the nuclear cage.Nature 292, 552–555.

    Article  PubMed  CAS  Google Scholar 

  170. Nickerson, J.A., He, D., Fey, E.G., and Coffey, D.S. (1990) The nuclear matrix, in P.R. Strauss and S.H. Wilson (eds.)The Eukaryotic Nucleus Molecular Biochemistry and Macromolecular AssembliesTelford Press, Caldwell, New Jersey, pp. 763.

    Google Scholar 

  171. Herman, R., Weymouth, L., and Penman, S. (1978) Heterogeneous nuclear RNA-protein fibers in chromatin-depleted nuclei.J. Cell Biol.78663–674.

    Article  PubMed  CAS  Google Scholar 

  172. Durfee, T., Mancini, M.A., Jones, D., Elledge, S.J., and Lee, W.H. (1994) The amino-terminal region of the retinoblastoma gene product binds a novel nuclear matrix protein that co-localizes to centers for RNA processing.J. Cell Biol.127609–622.

    Article  PubMed  CAS  Google Scholar 

  173. Blencowe, B.J., Nickerson, J.A., Issner, R., Penman, S., and Sharp, P.A. (1994) Association of nuclear matrix antigens with exon-containing splicing complexes.J. Cell Biol.127593–607.

    Article  PubMed  CAS  Google Scholar 

  174. Huang, S. and Spector, D.L. (1992) U1 and U2 small nuclear RNAs are present in nuclear speckles (published erratum appears in Proc Natl Acad Sei USA 1992 May 1;89(9):4218–9).Proc. Nail. Acad. Sci. USA 89, 305–308.

    Google Scholar 

  175. O’Keefe, R.T., Mayeda, A., Sadowski, C.L., Krainer, A.R., and Spector, D.L. (1994) Disruption of pre-mRNA splicing in vivo results in reorganization of splicing factors.J. Cell Biol.124249–260.

    Article  PubMed  Google Scholar 

  176. Hendzel, M.J., Sun, J.-M., Chen, H.Y., Rattner, J.B., and Davie, J.R. (1994) Histone acetyltransferase is associated with the nuclear matrix.J. Biol. Chem.26922894–22901.

    PubMed  CAS  Google Scholar 

  177. Tawfic, S. and Ahmed, K. (1994) Growth stimulus-mediated differential trans location of casein kinase 2 to the nuclear matrix.J. Biol. Chem.26924615–24620.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stein, G.S., Van Wijnen, A.J., Stein, J.L., Lian, J.B., Montecino, M. (1997). Interrelationships Between Nuclear Structure and Transcriptional Control of Cell Cycle and Tissue-Specific Genes. In: Nicolini, C. (eds) Genome Structure and Function. NATO ASI Series, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5550-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5550-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6338-8

  • Online ISBN: 978-94-011-5550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics