Skip to main content

Chromosomal DNA Loops and Domain Organization of the Eukaryotic Genome

  • Chapter
Genome Structure and Function

Part of the book series: NATO ASI Series ((ASHT,volume 31))

  • 362 Accesses

Abstract

Over twenty years ago it was found that chromosomal DNA in eukaryotic cell nuclei is organized into large loops by periodic attachment to the high salt-insoluble proteinous nuclear (chromosomal) matrix. The specificity of genomic DNA organization into loops has been intensively studied with the aim to find out whether they may constitute quasi-independent structural-functional units of the genome. These studies have resulted in conflicting findings and consequently in conflicting conclusions. In this paper different experimental approaches used to analyse the above problem will be critically reviewed. The discussion will be followed by the presentation of a novel approach for mapping DNA loop anchorage sites which has been developed in our laboratory. Based on the excision of whole DNA loops by topoisomerase II - mediated DNA cleavage at matrix attachment sites this approach seems to constitute a unique tool for analyzing the topological organization of chromosomal DNA in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cook, P.R. and Brazell, I.A. (1975) Supercoils in human DNAJ. Cell Sci. 19261–279.

    PubMed  CAS  Google Scholar 

  2. Cook, P.R. and Brazell, I.A. (1976) Conformational constrains in human DNAJ. Cell Sci. 22287–302.

    PubMed  CAS  Google Scholar 

  3. Cook, P.R., Brazell, I.A., and Jost, E. (1976) Characterization of nuclear structures containing superhelical DNAJ. Cell. Sci. 22303–324.

    PubMed  CAS  Google Scholar 

  4. Cook, P. and Brazell, I.A. (1978) Spectro fluorometric measurement of the binding of ethidium bromide to superhelical DNA from cell nucleiEur. J. Biochem. 84464–477.

    Article  Google Scholar 

  5. Warren, A.C. and Cook, P.R. (1978) Supercoiling of DNA and nuclear conformation during the cell cycleJ. Cell Sci. 30211–226.

    PubMed  CAS  Google Scholar 

  6. Berezney, R. and Coffey D. S. (1974) Identification of a nuclear protein matrixBiochem. Biophys. Res. Commun. 601410–1417.

    Article  PubMed  CAS  Google Scholar 

  7. Berezney, R. and Coffey, D. S. (1975) Nuclear protein matrix: association with newly synthesized DNAScience 189, 291–292.

    Article  PubMed  CAS  Google Scholar 

  8. Berezney, R. and Coffey, D.S., (1977) Nuclear matrix: Isolation and characterization of a framework structure from rat liver nucleiJ. Cell. Biol. 73616–637.

    Article  PubMed  CAS  Google Scholar 

  9. Paulson, J.R. and Laemmli, U.K. (1977) The structure of histone-depleted metaphase chromosomesCell 12,815–828.

    Article  Google Scholar 

  10. McCready, S.J., Akrigg, A., and Cook, P.R. (1979) Electron microscopy of intact nuclear DNA from human cellsJ. Cell. Sci. 3953–62.

    PubMed  CAS  Google Scholar 

  11. Hancock, R. and Hughes, M.E. (1982) Organization of DNA in the eukaryotic nucleus.Biol. Cell.44201–212.

    CAS  Google Scholar 

  12. Igo-Kemennes, T. and Zachau, H.G. (1977) Domains in chromatin structureCold Spring Harbor Symp. Quant. Biol 42109–118.

    Article  Google Scholar 

  13. Razin, S.V., Mantieva, V.L., and Georgiev, G.P. (1979) The similarity of DNA sequences remaining bound to scaffold upon nuclease treatment of interphase nuclei and metaphase chromosomesNucl. Acids Res. 171713–1735.

    Article  Google Scholar 

  14. Benyajati, C. and Worcel, A. (1976) Isolation, characterization and structure of the folded interphase genome of Drosophila melanogasterCell 9, 393–407.

    Article  PubMed  CAS  Google Scholar 

  15. Hartwig, M. (1982) Organization of mammalian chromosomal DNA: supercoiled and folded circular DNA subunits from interphase cell nucleiActa Biol. Med. Germ. 37421–432.

    Google Scholar 

  16. Nakane, M., Ide, T., Anzai, K., Ohara, S., and Andoh, T. (1978) Supercoiled DNA folded by nonhistone proteins in cultured mouse carcinoma cellsJ. Biochem. 84145–157.

    PubMed  CAS  Google Scholar 

  17. Buongiorno-Nardelli, M., Gioacchino, M., Carri, M.T., and Marilley, M. (1982) A relationship between replicon size and supercoiled loop domains in the eukaryotic genomeNature 298, 100–102.

    Article  PubMed  CAS  Google Scholar 

  18. Vogelstein, B., Small, D., Robinson, S., and Nelkin, B. (1985) The nuclear matrix and the organization of nuclear DNA, In Bekhor I (ed)Progress in nonhistone protein researchCRC Press, Inc., Boka Raton, Florida, Vol. 2, pp. 115–129.

    Google Scholar 

  19. Jackson, D. A., Dickinson, P., and Cook, P. R. (1990) The size of chromatin loops in HeLa cellsEMBO J. 9567–571.

    PubMed  CAS  Google Scholar 

  20. Razin, S.V., Gromova, I.I., and larovaia, O.V. (1995) Specificity and functional significance of DNA interaction with the nuclear matrix: New approaches to clarify the old questionsInt Rev Cytol 162B, 405–448.

    PubMed  CAS  Google Scholar 

  21. Hancock, R (1982) Topological organization of interphase DNA: the nuclear matrix and other skeletal structuresBiol. Cell. 46105–122.

    CAS  Google Scholar 

  22. Weintraub, H. and Groudine, M. (1976) Chromosomal subunits in active genes have an altered conformationScience 73, 848–856.

    Article  Google Scholar 

  23. Cook, P.R. and Brazell, I.A. (1980) Mapping sequences in loops of nuclear DNA by their progressive detachment from the nuclear cageNucL. Acids Res. 82895–2906.

    Article  PubMed  CAS  Google Scholar 

  24. Cook, P.R., Lang, J., Hayday, A., Lania. L., Fried, M., Chiswell, D.J., and Wyke, A. (1982) Active viral genes in transformed cells lie close to the nuclear cageEMBO J. 1447–452.

    PubMed  CAS  Google Scholar 

  25. Robinson, S.I., Nelkin, B.D., and Vogelstein, B. (1982) The ovalbumin gene is associated with the nuclear matrix of chicken oviduct cellsCell 28, 99–106.

    Article  PubMed  CAS  Google Scholar 

  26. Robinson, S.I., Small, D., Idzerda, R., McKnight, G.S. and Vogelstein, B. (1983) The association of active genes with the nuclear matrix of the chicken oviductNucl. Acids Res. 155113–5130.

    Article  Google Scholar 

  27. Small, D. and Vogelstein, B. (1985) The anatomy of supercoiled loops in theDrosophila7F locus,Nucl. Acids Res.13, 7703–7713.

    Article  PubMed  CAS  Google Scholar 

  28. .Small, D., Nelkin, B. and Vogelstein, B. (1985) The association of transcribed genes with the nuclear matrix ofDrosophilacells during heat shock,Nucl. Acids Res.13, 2413–2431.

    Article  PubMed  CAS  Google Scholar 

  29. Mirkovich, J., Mirault, E., and Laemmli, U.K. (1984) Organization of the higher order chromatin loop: specific DNA attachment sites on nuclear scaffoldCell 39, 323–332.

    Google Scholar 

  30. Jackson, D.A. and Cook, P.R. (1985) Transcription occurs at a nucleoskeletonEMBO J. 4919–925.

    PubMed  CAS  Google Scholar 

  31. Jackson, D.A. and Cook, P.R. (1986) Replication occurs at a nucleoskeletonEMBO J. 51403–1410.

    PubMed  CAS  Google Scholar 

  32. Razin, S.V., Petrov, P., and Hancock, R. (1991). Precise localization of the a-globin gene cluster within one of 20 to 300 kb fragments released by cleavage of chicken chromosomal DNA at topoisomerase II sites in vivo: evidence that the fragments are DNA loops or domainsProc. Natl. Acad. Sci. USA 88, 8515–8519.

    Article  PubMed  CAS  Google Scholar 

  33. Razin, S.V., Hancock, R., Iarovaia, O., Westergaard, O., Gromova, I., and Georgiev, G.P. (1993) Structural-functional organization of chromosomal DNA domainsCold Spring Harbor Symp. Quant. Biol. 5825–35.

    Article  PubMed  CAS  Google Scholar 

  34. Gromova, I.I., Thomsen, B., and Razin, S.V. (1995) Different topoisomerase II antitumour drugs direct similar specific long-range fragmentation of an amplifiedc-mycgene locus in living cells and in high salt-extracted nuclei,Proc. Natl. Acad. Sci. USA 92, 102–106.

    Article  PubMed  CAS  Google Scholar 

  35. Gerdes, M.G., Carter, K.C., Moen, Jr., P.T., and Lawrence, J.B. (1994) Dynamic changes in the higher-level chromatin organization of specific sequences revealed byin situhybridization to nuclear halos,J. Cell. Biol.126, 289–304.

    Article  PubMed  CAS  Google Scholar 

  36. Bickmore, W.A., Oghene, K. (1996) Visualizing the spatial relationships between defined DNA sequences and the axial region of extracted metaphase chromosomesCell 84, 95–104.

    Article  PubMed  CAS  Google Scholar 

  37. Jost, J.-P. and Seldran, M. (1984) Association of transcriptionally active vitellogenin II gene with the nuclear matrix of chicken live,.EMBO J.32205–2208.

    Google Scholar 

  38. Kirov, N., Djondjurov, L., and Tsanev, R. (1984) Nuclear matrix and transcriptional activity of the mouse a-globin geneJ. Mol. Biol. 180601–614.

    Article  PubMed  CAS  Google Scholar 

  39. Thorburn, A., Moore, R., Knowland, J. (1988) Attachment of transcriptionally active DNA sequences to the nucleoskeleton under isotonic conditionsNucl. Acids Res. 167183.

    Article  PubMed  CAS  Google Scholar 

  40. Thorburn, A. and Knowland, J. (1993) Attachment of vitellogenin genes to the nucleoskeleton accompanies their activationBiochem. Biophys. Res. Commun. 191308–313.

    Article  PubMed  CAS  Google Scholar 

  41. Jackson, D.A., Hassan, A.B., Errington, R.J., and Cook, P.R. (1993). Visualization of focal sites of transcription within human nucleiEMBO J. 121059–1065.

    PubMed  CAS  Google Scholar 

  42. Xing, Y., Johnson, C.V., Dobner, P.R., and Lawrence, J.B. (1993) Higher level organization of individual gene transcription and RNA splicingScience 259, 1326–1330.

    Article  PubMed  CAS  Google Scholar 

  43. Xing, Y., Johnson, C.V., Moen, Jr., P.T., McNeil J.A., and Lawrence J.B. (1995) Nonrandom gene organization: Structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domainsJ. Cell. Biol. 1311635–1647.

    Article  PubMed  CAS  Google Scholar 

  44. Cook, P.R. (1994) RNA polymerase: structural determinant of the chromatin loop and chromosomeBioessays 16, 425–430.

    Article  PubMed  CAS  Google Scholar 

  45. Razin, S.V., Rzeszowska-Wolny, J., Moreau, J., and Scherrer, K. (1985) Localization of regions of DNA attachment to the nuclear skeleton within chicken alpha-globin genes in functionally active and functionally inactive nucleiMol. Biol. (Moscow) 19, 456–466.

    CAS  Google Scholar 

  46. Razin, S.V. (1987) DNA interactions with the nuclear matrix and spatial organization of replication and transcriptionBioessays 6, 19–23.

    Article  PubMed  CAS  Google Scholar 

  47. Earache, G., Razin, S.V., Rzeszowska-Wolny. J., Moreau. J., Recillas-Targa, F., and Scherrer, K. (1990) Mapping of structural and transcription-related matrix attachment sites in the a-globin gene domain of avian erythroblasts and erythrocytesMol. Cell. Biol. 105349–5358.

    Google Scholar 

  48. Kalandadze, A.G., Bushara, S.A., Vassetzky, Y.S., and Razin, S.V. (1990) Characterization of DNA pattern in the site of permanent attachment to the nuclear matrix located in the vicinity of replication originBiochem. Biophys. Res. Commun. 1689–15.

    Article  PubMed  CAS  Google Scholar 

  49. Berrious, M., Osheroff, N., and Fisher, P. (1985) In situ localization of DNA topoisomerase II, a major polypeptide of Drosophila nuclear matrixProc. Natl. Acad. Sci. USA 82, 4142–4146.

    Article  Google Scholar 

  50. Earnshaw, W. C., Halligan, B., Cooke, C. A., Heck, M. M. S., and Liu, L.F. (1985) Topoisomerase II is a structural component of mitotic chromosome scaffoldsJ. Cell. Biol. 1001706–1715.

    Article  PubMed  CAS  Google Scholar 

  51. Wang, J.C. (1985) DNA topoisomerasesAnnu Rev. Biochem. 60513–552.

    Article  Google Scholar 

  52. Chen, G.L., Yang, L., Rowe. T.C., Halligan, B.D., Tewey, K.M. and Liu, L. (1984) Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian topoisomerase IIJ. Biol. Chem. 25913560–13566.

    PubMed  CAS  Google Scholar 

  53. Robinson, M.J. and Osheroff, N. (1990) Stabilization of the topoisomerase II-DNA cleavage complex by antineoplastic drugs: Inhibition of the enzyme-mediated DNA religation by 4’-(9-acridinylamino)tnethanesulfon-m-anisidideBiochemistry 29, 2511–2515.

    Article  PubMed  CAS  Google Scholar 

  54. Sander, M. and Hsieh, T.S. (1985) Drosophila topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage siteNucl. Acids Res. 131057–1072.

    Article  PubMed  CAS  Google Scholar 

  55. Udvardy, A., Schedl, P., Sander, M., and Hsieh, T. (1985) Novel partitioning of DNA cleavage sites for Drosophila topoisomerase IICell 40, 933–941.

    Article  PubMed  CAS  Google Scholar 

  56. Reitman, M. and Felsenfeld, G. (1990) Developmental regulation of topoisomerase II sites and DNase 1 - hypersensitive sites in the chicken b-globin locusMol. Cell. Biol. 102779–2786.

    Google Scholar 

  57. Udvardy, A. and Schedl, P. (1991) Chromatin structure, not DNA sequence specificity, is the primary determinant of topoisomerase II sites of action in vivoMol. CelL Biol. 114973–4984.

    PubMed  CAS  Google Scholar 

  58. Fernandes, D.I., Danks, M.K., and Beck, W.T. (1990) Decreased nuclear matrix DNA topoisomerase II in human leukemia cells resistant to VM-26 and m-AMSABiochemistry 29, 4235–4241.

    Article  PubMed  CAS  Google Scholar 

  59. Kaufmann, S.H. and Shapper, J.H. (1991) Association of topoisomerase II with the hepatoma cell nuclear matrix: the role of intermolecular disulfide bond formationExp. Cell. Res. 192511–523.

    Article  PubMed  CAS  Google Scholar 

  60. Danks, M.K., Qiu, J., Catapano, C.V., Schmidt, C.A., Beck, W.T., and Fernandes, D.J. (1994) Subcellular distribution of the a and b topoisomerase II-DNA complexes stabilized by VM-26Biochem Phurmucol. 481785–1795.

    Article  CAS  Google Scholar 

  61. Zini, N., Santi, S., Ognibene, A., Bavelloni, A., Neri, L.M., Valinori, A., Mariani, E., Negri, C., AstaldiRicotti, G.C., and Maraldi, N.M. (1994) Discrete localization of different DNA topoisomerases in HeLa and K562 cell nuclei and subnuclear fractionsEll . Cell. Res. 210 336–348.

    Article  CAS  Google Scholar 

  62. Vassetzky, Y.S., Razin, S.V., and Georgiev, G.P. (1989) DNA fragments which specifically bind to isolated nuclear matrix in vitro interact with matrix-associated DNA topoisomerase IIBiochem. Biophys. Res. Commun. 1591263–1268.

    Article  PubMed  Google Scholar 

  63. Surdej, P., Got, C., Rosset, R., and Miassod, R. (1990) Supragenic loop organization: mapping in Drosophila embryos, of scaffold-associated regions on a 800 kilobase continuum cloned from the 14B–15B first chromosome regionNucleic Acids Res. 183713–3722.

    Article  PubMed  CAS  Google Scholar 

  64. Iarovaia, O.V., Hancock. R., Lagarkova, M.A., Miassod, R., and Razin, S.V. (1996) Mapping of genomic DNA loop organization in a 500-kilobase region of the Drosophila X chromosome using the topoisomerase 11-mediated DNA loop excision protocolMol. Cell. Biol. 16302–308.

    PubMed  CAS  Google Scholar 

  65. Comings, D.E. and Wallack A.S. (1978) DNA-binding properties of nuclear matrix proteinsJ. Cell. Sci. 34233–246.

    Article  PubMed  CAS  Google Scholar 

  66. Cockerill, P.N. and Garrard, W.T. (1986) Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sitesCell 44, 273–282.

    Article  PubMed  CAS  Google Scholar 

  67. Cockerill, P.N. and Garrard, W.T. (1986) Chromosomal loop anchorage sites appear to be evolutionary conservedFEBS Lett. 2045–7.

    Article  PubMed  CAS  Google Scholar 

  68. Cockerill, P.N., Yuen, M.-H., and Garrard, W.T. (1987) The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elementsJ. Biol. Chem. 2625394–5397.

    PubMed  CAS  Google Scholar 

  69. Das, A.T., Luderus, M.E., and Lamers, W.H. (1993) Identification and analysis of a matrix-attachment region 5’ of the rat glutamate-dehydrogenase-encoding geneEur. J. Biochem. 215777–785.

    Article  PubMed  CAS  Google Scholar 

  70. Mielke, C., Koliwi, I., Kohwi-Shigetnatsu, T., and Bode J. (1990) Hierarchical binding of DNA fragments derived from scaffold-attached regions: correlation of properties in vitro and function in vivoBiochemistry 29, 7475–7485.

    Article  PubMed  CAS  Google Scholar 

  71. Bode, J., Kohwi, I., Dickinson, L., Joh, T., Klehr, D., Mielke, C., and Kohwi-Shigematsu, T. (1992) Biological significance of unwinding capability of nuclear matrix-associated DNAsScience 255, 195–197.

    Article  PubMed  CAS  Google Scholar 

  72. Kas, E., Izaurralde, E., and Laemmli, U.K. (1989) Specific inhibition of DNA binding to nuclear scaffolds and histone HI by distamycin: The role of oligo(dA) oligo(dT) tractsJ. Mol. Biol. 210587–599.

    Article  PubMed  CAS  Google Scholar 

  73. Dijkwel, P.A. and Hamlin, J.L. (1988) Matrix attachment regions are positioned near replication initiation sites, genes, and an interamplicon junction in the amplified dihidrofolate reductase domain of Chinese hamster ovary cellsMol. Cell. Biol. 85398–53409.

    PubMed  CAS  Google Scholar 

  74. Phi-Van, L. and Stratling, W.H. (1988) The matrix attachment regions of the chicken lysozyme gene comap with the boundaries of the chromatin domainEMBO J. 7655–664.

    CAS  Google Scholar 

  75. Bode, J. and Maass, K. (1988) Chromatin domain surrounding the human interferon-b gene as defined by scaffold attached regionsBiochemistry 27, 4706–4711.

    Article  PubMed  CAS  Google Scholar 

  76. Levy-Wilson, B. and Fortier, C. (1989) The limits of the DNase I - sensitive domain in the human apolipoprotein B gene coincide with the locations of chromosomal anchorage loops and define the 5’ and 3’ boundaries of the geneJ. Biol. Chem. 26421196–21204.

    PubMed  CAS  Google Scholar 

  77. Amati, B. and Gasser, S.M. (1990) Drosophila scaffold-attached regions bind nuclear scaffolds and can function as ARS elements in both budding and fission yeastsMol. Cell. Biol. 105442–5454.

    PubMed  CAS  Google Scholar 

  78. Ito, T. and Sakaki, Y. (1987) Nuclear matrix association regions of rat alpha 2-macroglobulin geneBiochem. Biophys Res Commun 149, 449–454.

    Article  PubMed  CAS  Google Scholar 

  79. Kas, E. and Chasin, L.A. (1987) Anchorage of the Chinese hamster dihydrofolate reductase gene to the nuclear scaffold occurs in an intragenic regionJ. Mol. Biol. 198577–692.

    Article  Google Scholar 

  80. Beggs, A.H. and Migeon, B.R. (1989) Chromatin loop structure of the human X chromosome: Relevance to X inactivation and CpG clustersMol. Cell. BioL. 92322–2331.

    PubMed  CAS  Google Scholar 

  81. Romig, H., Ruff, J., Fackelmayer, F.O., Patil, M.S., and Richter, A. (1994) Characterization of two intronic nuclear-matrix-attachment regions in the human DNA topoisomerase I geneEur. J. Biochem. 221411–419.

    Article  PubMed  CAS  Google Scholar 

  82. Brun, C., Dang Q., and Miassod, R. (1990) Studies of an 800-kilobase DNA stretch of the Drosophila X chromosome: comparing of a subclass of scaffold-attached regions with sequences able to replicate autonomously in Saccharomyces cerevisiaeMol. Cell. Biol. 105455–5463.

    PubMed  CAS  Google Scholar 

  83. Aelen, J.M., Opstelsten, R.J. and Wanka, F. (1983) Organization of DNA replication in Physarum polycephalum. Attachment of origins of replication and replication forks to the nuclear matrixNucl. Acids Res. 111181–1195.

    Article  PubMed  CAS  Google Scholar 

  84. Van der Velden, H.M., Poot, M., and Wanka, F.(1984) In vitro DNA replication in association with the nuclear matrix of permeable mammalian cellsBiochim. Biophys. Acta. 782429–436.

    Article  PubMed  Google Scholar 

  85. Van der Velden, H.M.V. and Wanka, F. (1987) The nuclear matrix - its role in the spatial organization and replication of eukaryotic DNAMol. Biol. Rep. 1269–77.

    Article  PubMed  Google Scholar 

  86. Pardoll, D.M., Vogelstein, B, and Coffey, D.S. (1980) A fixed site of DNA replication in eukaryotic cellsCell 19, 527–536.

    Article  PubMed  CAS  Google Scholar 

  87. Carri, M.T., Micheli, G., Graziano, E., Pace, T., and Buongiorno-Nardelli, M. (1986) The relationship between chromosomal origins of replication and the nuclear matrix during the cell cycleExp. Cell. Res. 164426–436.

    Article  PubMed  CAS  Google Scholar 

  88. Dijkwel, P. A., Wenittk, P. W., and Poddighe, J. (1986) Permanent attachment of replication origins to the nuclear matrix in BHK cellsNucl. Acids Res. 143241–3249.

    Article  PubMed  CAS  Google Scholar 

  89. Razin, S.V., Kekelidze, M.G., Lukanidin, E.M., Scherrer, K., and Georgiev, G.P. (1986) Replication origins are attached to the nuclear skeletonNucl. Acids Res. 148189–8207.

    Article  PubMed  CAS  Google Scholar 

  90. Ariizumi, K., Wang, Z., and Tucker, P.W. (1993) Immunoglobulin heavy chain enhancer is located near or in an initiation zone of chromosomal DNA replicationProc. Natl. Acad. Sci. USA 90, 3695–3699.

    Article  PubMed  CAS  Google Scholar 

  91. Marilley, M. and Gassend-Bonnet, G. (1989) Supercoiled loop organization of genomic DNA: a close relationship between loop domains, expression units, and replicon organization in rDNA from Xenopus laevis, Eap.Cell. Res.180475–489.

    Article  CAS  Google Scholar 

  92. Du, C., Sanzgiri, R.P., Shaiu, W.L., Choi, J.K., Hou, Z., Benbow, R.M., and Dobbs, D.L. (1995) Modular structural elements in the replication origin region of Tetrahymena rDNANucl. Acids Res. 231766–1774

    Article  PubMed  CAS  Google Scholar 

  93. Umek, R.M., Littskens, M.H.K., Kowalski, D., and Huberman, J. (1989) New beginnings in the studies of eukaryotic DNA replication originsBiochim. Biophys. Acta 1007, 1–14.

    Article  PubMed  CAS  Google Scholar 

  94. Amati, B. and Gasser, S.M. (1988) Chromosomal ARS and CEN elements bind specifically to the yeast nuclear scaffoldCell 54, 967–978.

    Article  PubMed  CAS  Google Scholar 

  95. Boulikas, T. (1992) Homeotic protein binding sites, origins of replication and nuclear matrix anchorage sites share the ATTA and ATTTA motifsJ. Cell. Biochem. 501–13.

    Article  Google Scholar 

  96. Stief, A.C., Winter, D.M., Stratling, W.H., and Sippel, A.E. (1989) A nuclear DNA attachment element mediates elevated and position independent gene activityNature 341, 343–345.

    Article  PubMed  CAS  Google Scholar 

  97. Phi-Van, L., von Kries, J.P., Ostertag, W., and Stratling, W.H. 1990. The chicken lysozyme 5’ matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfectedgenes Mol. Cell. Biol.102302–2307.

    PubMed  CAS  Google Scholar 

  98. Yu, J., Bock, J.H., Slightom, J.L., and Villeponteau, B. (1994) A 5’ matrix-attachment region and the polyoma enhancer together confer position-independent transcriptionGene 139, 139–145.

    Article  PubMed  CAS  Google Scholar 

  99. Kalos, M. and Fournier, R.E. (1995) Position independent transgene expression mediated by boundary elements from the apolipoprotein B chromatin domainMol. Cell. Biol. 15198–207.

    PubMed  CAS  Google Scholar 

  100. Poljak, L., Seum, C., Mattioni, T. and Laemmli, U.K. 1994. SARs stimulate but do not confer position independent gene expressionNucleic Acids Res. 224386–4394.

    Article  PubMed  CAS  Google Scholar 

  101. Dorer, D.R. and Henikoff, S. (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing in DrosophilaCell 77, 993–1002.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Razin, S.V. (1997). Chromosomal DNA Loops and Domain Organization of the Eukaryotic Genome. In: Nicolini, C. (eds) Genome Structure and Function. NATO ASI Series, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5550-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5550-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6338-8

  • Online ISBN: 978-94-011-5550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics