Skip to main content

Regulation of Auxin-Induced Ethylene Biosynthesis in Etiolated Pea Stems

  • Chapter
Biology and Biotechnology of the Plant Hormone Ethylene

Part of the book series: NATO ASI Series ((ASHT,volume 34))

Abstract

The etiolated pea stem was one of the first model systems for studying auxin-induced ethylene production. Besides being useful for examining the regulation of ethylene biosynthesis, pea seedlings exhibit a number of well-described growth responses mediated, at least in part, by ethylene. This chapter will discuss some of these responses, attempting to integrate earlier observations with more recent information provided by mutants and molecular analysis. It will also summarize our work on the regulation of auxin-induced ethylene biosynthesis and how it may be applicable to the understanding of ethylene-mediated growth responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, F.B, Morgan, P.W., and Saltveit, M.E. (1992) Ethylene in Plant Biology, Academic Press, New York.

    Google Scholar 

  2. Britz, S.J. and Galston, A.W. (1982a) Physiology of movements in stems of seedling Pisum sativum L. cv Alaska, I. Experimental separation of nutation from gravitropsism, Plant Physiol. 70, 264–271.

    Article  PubMed  CAS  Google Scholar 

  3. Britz, S.J. and Galston, A.W. (1982b) Physiology of movements in stems of seedling Pisum sativum L. cv Alaska, II. The role of the apical hook and of auxin in nutation, Plant Physiol. 70, 1401–1404.

    Article  PubMed  CAS  Google Scholar 

  4. Burg S.P. and Burg E.A. (1966) The interaction between auxin and ethylene and its role in plant growth, Proc. Natl. Acad. Sci. USA 55, 262–269.

    Article  PubMed  CAS  Google Scholar 

  5. Drory A., Mayak S., and Woodson W.R. (1993) Expression of ethylene biosynthetic pathway mRNAs is spatially regulated within carnation flower petals, J. Plant Physiol. 141, 663–667.

    Article  CAS  Google Scholar 

  6. Eisinger, W. (1983) Regulation of pea internode expansion by ethylene, Annu. Rev. Plant Physiol. 34, 225–240.

    Article  CAS  Google Scholar 

  7. Galston, A.W., Turtle A.A., and Penny, P.J. (1964) A kinetic study of growth movements and photomorphogenesis in etiolated pea seedlings, Amer. J. Bot. 51, 853–858.

    Article  Google Scholar 

  8. Goeschl, J.D, Rappaport, D.L., and Pratt, H.K. (1966) Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress, Plant Physiol. 41, 877–884.

    Article  PubMed  CAS  Google Scholar 

  9. Heathcote, D.G. and Aston, T.J. (1970) The Physiology of Plant Nutation, I. Nutation and geotropic response, J. Exp. Bot. 21, 997–1002.

    Article  Google Scholar 

  10. Holdsworth M.J., Bird C.R., Ray J., Schuch W., and Grierson D. (1987) Structure and expression of an ethylene-related mRNA from tomato, Nuc. Acids. Res. 15, 731–739.

    Article  CAS  Google Scholar 

  11. Hyodo H., Hashimoto, C, Morozumi S., Hu W., and Tanaka, K. (1993) Characterization and induction of the activity of 1-aminocylopropane-1-carboxylate oxidase in the wounded mesocarp tissue of Cucurbita maxima, PlantCell Physiol. 34, 667–671.

    CAS  Google Scholar 

  12. Johnsson, A. (1979) Circumnutation, in W. Haupt and M.E. Feinleib (eds.), Encyclopedia of Plant Physiology-New Series, Vol. 7, Springer-Verlag, Berlin.

    Google Scholar 

  13. Kang, B.G., Yocum, C.S., Burg, S.P., and Ray, P.M. (1967) Ethylene and carbon dioxide, mediation of hypocotyl hook response, Science 156, 958–959.

    Article  PubMed  CAS  Google Scholar 

  14. Kende, H. (1993) Ethylene biosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 283–307.

    Article  CAS  Google Scholar 

  15. Kieber, J.J., Rothenburg M., Roman G., Feldman, K.A., and Ecker, J.R. (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases, Cell 72, 427–441.

    Article  PubMed  CAS  Google Scholar 

  16. Kim, W.T. and Yang, S.F. (1994) Structure and expression of cDNAs encoding 1-aminocyclo-propane-1-carboxylate oxidase homologs isolated from excised mung bean hypocotyls, Planta 194, 223–229.

    Article  PubMed  CAS  Google Scholar 

  17. Lehman A., Black R., and Ecker, J.R. (1996) HOOKLESS1, an ethylene responsive gene, is required for differential cell elongation in the Arabidopsis hypocotyl, Cell 85, 183–194.

    Article  PubMed  CAS  Google Scholar 

  18. Li N., Parsons, B.L., Liu D., and Mattoo, A. (1992) Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines, Plant MoL Biol. 18, 477–487.

    Article  PubMed  CAS  Google Scholar 

  19. Lyon, C.J. (1970) Ethylene inhibition of auxin transport by gravity in leaves, Plant Physiol. 45, 644–646.

    Article  PubMed  CAS  Google Scholar 

  20. Morgan, P.W. and Gausman, H.W. (1966) Effects of ethylene on auxin transport, Plant Physiol. 41, 45–52.

    Article  PubMed  CAS  Google Scholar 

  21. Nakagawa N., Mori H., Yamazaki K., and Imaseki, H. (1991) Cloning of a complementary DNA for auxin-induced 1-aminocyclopropane-1-carboxylate synthase and differential expression of the gene by auxin and wounding, Plant Cell Physiol. 32, 1153–1163.

    CAS  Google Scholar 

  22. Olson, D.C., Oetiker, J.H., and Yang, S.F. (1995) Analysis of LE-ACS3, a 1-aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants, J. Biol. Chem. 270, 14056–14061.

    Article  PubMed  CAS  Google Scholar 

  23. O’Neill, S.D., Nadeau, J.A., Zhang, X.S., Bui, A.Q., and Halevy, A.H. (1993) Interorgan regulation of ethylene biosynthetic genes by pollination, Plant Cell 5, 419–432.

    PubMed  Google Scholar 

  24. Peck, S.C. (1995) Positive and negative feedback regulation of ethylene biosynthesis induced by indole-3-acetic acid, Ph.D. Dissertation, Michigan State University, East Lansing, Michigan.

    Google Scholar 

  25. Peck, S.C. and Kende, H. (1995) Sequential induction of the enzymes of ethylene biosynthesis by indole-3-acetic acid in etiolated peas, Plant Mol. Biol. 28, 293–301.

    Article  PubMed  CAS  Google Scholar 

  26. Riov J., and Yang, S.F. (1982) Effects of exogenous ethylene on ethylene production in citrus leaf tissue, Plant Physiol. 70, 136–141.

    Article  PubMed  CAS  Google Scholar 

  27. Roman G., Lubarsky B., Kieber, J.J., Rothenburg M., and Ecker, J.R. (1985) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana, five novel loci integrated into a stress response pathway, Genetics 139, 1393–1409.

    Google Scholar 

  28. Schierle, J. and Schwark, A. (1988) Asymmetric synthesis and concentrations of ethylene in the hypocotyl hook of Phaseolus vulgaris, J. Plant Physiol. 133, 325–331.

    Article  CAS  Google Scholar 

  29. Schierle J., Rohwer F., and Bopp, M. (1989) Distribution of ethylene synthesis along the etiolated pea shoot and its regulation by ethylene, J. Plant Physiol. 134, 331–337.

    Article  CAS  Google Scholar 

  30. Schwark, A. and Schierle, J. (1992) Interaction of ethylene and auxin in the regulation of hook growth I, The role of auxin in different growing regions of the hypocotyl hook of Phaseolus vulgaris, J. Plant Physiol. 140, 562–570.

    Article  CAS  Google Scholar 

  31. Silk, W.H. and Erickson, R.O. (1978) Kinematics of hypocotyl curvature, Amer. J. Bot. 65, 310–319.

    Article  Google Scholar 

  32. Spanu P., Boiler T., and Kende, H. (1993) Differential accumulation of transcripts of 1-aminocyclopropane-1-carboxylate synthase genes in tomato plants infected with Phytophthora infestans and in elicitor-treated tomato cell suspension cells, J. Plant Physiol. 141, 557–562.

    Article  CAS  Google Scholar 

  33. Yang, S.F. and Hoffman, N.E. (1984) Ethylene biosynthesis and its regulation in higher plants, Annu. Rev. Plant Physiol. 35, 155–189.

    Article  CAS  Google Scholar 

  34. Yoshi, H. and Imaseki, H. (1982) Regulation of auxin-induced ethylene biosynthesis. Repression of inductive formation of 1-aminocyclopropane-1-carboxylate synthase by ethylene, Plant & Cell Physiol. 23,639–649.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Peck, S.C., Kende, H. (1997). Regulation of Auxin-Induced Ethylene Biosynthesis in Etiolated Pea Stems. In: Kanellis, A.K., Chang, C., Kende, H., Grierson, D. (eds) Biology and Biotechnology of the Plant Hormone Ethylene. NATO ASI Series, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5546-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5546-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6336-4

  • Online ISBN: 978-94-011-5546-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics