Skip to main content

Differential Expression of ACC Oxidase Genes in Melon and Physiological Characterization of Fruit Expressing an Antisense ACC Oxidase Gene

  • Chapter
Biology and Biotechnology of the Plant Hormone Ethylene

Part of the book series: NATO ASI Series ((ASHT,volume 34))

Abstract

Studies on the molecular factors of fruit ripening have been, so far, almost exclusively restricted to tomato as a model fruit. However, a number of other climacteric fruit, that exhibit a sharp climacteric phase with a very fast ripening rate might also represent valuable models. Cantaloupe Charentais melon is one of these fruit. It is widely cultivated in Southern Europe and has very good organoleptic traits such as the accumulation of large amounts of sugars and the production of abundant aroma volatiles. However it has poor keeping quality and cannot withstand long transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kende, H. (1993) Ethylene biosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 283–307.

    Article  CAS  Google Scholar 

  2. Bouzayen M., Cooper W., Barry C., Zegzouti H., Hamilton, A.J., and Grierson, D. (1993) EFE multigene family in tomato plants: expression and characterization. In Cellular and molecular aspects of the plant hormone ethylene,. J.C Pech, A. Latchi, C. Balagui (eds,), Kluwer Academic Publishers, Dordrecht, the Netherlands, pp76–81.

    Google Scholar 

  3. Barry, C.S., Blume B., Bouzayen M., Cooper W., Hamilton, A.J., and Grierson, D. (1996) Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato, Plant J. 9, 525–535.

    Article  PubMed  CAS  Google Scholar 

  4. Lasserre E., Bouquin T., Hernandez J., Bull J., Pech J.C., and Balagué C. (1996) Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.), Mol. Gen. Genet. 251, 81–90.

    PubMed  CAS  Google Scholar 

  5. Hamilton, A.J., Lycett, G.W., and Grierson D. (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants, Nature 346, 284–287.

    Article  CAS  Google Scholar 

  6. Oeller, P.W., Min-Wong L., Taylor, L.P., Pike, D.A., and Theologis A. (1991) Reversible inhibition of tomato fruit senescence by antisense RNA, Science 254, 437–439.

    Article  PubMed  CAS  Google Scholar 

  7. Klee, H.J., Hayford, M.B., Kretzmer, K.A., Bany, G.F., and Kishore G.M. (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants, Plant Cell 3, 1187–1193.

    PubMed  CAS  Google Scholar 

  8. Good X., Kellogg, J.A., Wagoner W., Langhoff D., Matsumura W., and Bestwick, R.K. (1994) Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrolase, Plant Mol. Biol. 26, 781–790.

    Article  PubMed  CAS  Google Scholar 

  9. Ayub R., Guis M., Ben Amor M., Gillot L., Roustan, J.P., Latchi A., Bouzayen M., and Pech, J.C. (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits, Nature Biotechnology 14, 862–866.

    Article  PubMed  CAS  Google Scholar 

  10. Roby D., Broglie K., Gaynor J., and Broglie, R. (1991) Regulation of a chitinase gene promoter by ethylene and elicitors in bean protoplasts, Plant Physiol. 97, 433–439.

    Article  PubMed  CAS  Google Scholar 

  11. Balagui C., Watson, C.F., Turner, A.J., Rougt P., Picton S., Pech, J.C., and Grierson, D. (1993) Isolation of a ripening and wound-induced cDNA from Cucumis melo L., with homology to the ethylene-forming enzyme, Eur. J. Biochem. 212, 27–34.

    Article  Google Scholar 

  12. Salveit Jr., M.E. (1993) Internal carbon dioxide and ethylene levels in ripening tomato fruit attached to or detached from the plant, Physiol. Plant. 89, 204–210.

    Article  Google Scholar 

  13. Mansour R., Latchi A., Vaillant V., Pech J.C., and Reid M.S. (1986) Metabolism of 1-aminocyclopropane-1-carboxylic acid in ripening apple fruit, Physiol. Plant 66, 495–502.

    Article  CAS  Google Scholar 

  14. Bufler, G. (1984) Ethylene-enhanced 1-aminocyclopropane-1-carboxylic acid synthase activity in ripening apples, Plant Physiol. 75, 192–195.

    Article  PubMed  CAS  Google Scholar 

  15. Liu Y., Hoffrnan, N.E., and Yang, S.F. (1985) Ethylene-promoted malonylation of 1-aminocyclopropane-1-carboxylic acid participates in autoinhibition of ethylene synthesis in grapefruit flavedo discs, Planta 164, 565–568.

    Article  CAS  Google Scholar 

  16. Abbal, Ph. and Planton, G. (1990) La mesure objective de la fermeté des fruits et légumes In: 9° Colloque sur les recherches fruitiéres. CTIFL-INRA, Publishers, 147, Rue de l’Universite, 75338, Paris, 69–81.

    Google Scholar 

  17. Watkins, C.G., Haki, J.M., and Frenkel C (1988) Activities of polygalacturonase, a-D-mannosidase, and a-D and b-D galactosidases in ripening tomato, HortScience 23, 192–194.

    CAS  Google Scholar 

  18. Fils-Lycaon, B. and Buret, M. (1991) Changes in glycosidase activities during development and ripening of melon, Postharvest Biology and Technology 1, 143–151.

    Article  CAS  Google Scholar 

  19. Taillan E., Ambid C., Pech, J.C., and Raynal, J. (1992) Demethylation of pectic substances: relationship to methylesterase activity during brine storage of cherries, J. Fd Sci. 57, 682–685.

    Article  CAS  Google Scholar 

  20. Tang X., Wang H., Brandt, A.S., and Woodson, W.R. (1993) Organization and structure of the 1-aminocyclopropane-1-carboxylate oxidase gene family from Petunia hybrida, Plant Mol Biol. 23, 1151–1164.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guis, M. et al. (1997). Differential Expression of ACC Oxidase Genes in Melon and Physiological Characterization of Fruit Expressing an Antisense ACC Oxidase Gene. In: Kanellis, A.K., Chang, C., Kende, H., Grierson, D. (eds) Biology and Biotechnology of the Plant Hormone Ethylene. NATO ASI Series, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5546-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5546-5_40

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6336-4

  • Online ISBN: 978-94-011-5546-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics