Skip to main content

Ethylene and the Defense Against Endogenous Oxidative Stress in Higher Plants

  • Chapter
Biology and Biotechnology of the Plant Hormone Ethylene

Part of the book series: NATO ASI Series ((ASHT,volume 34))

Abstract

In higher plants, activation of ethylene biosynthesis is a common and well-known stress-related response. Depending on plant species and tissues studied, the stress-related increase in ethylene production may vary from several-fold to many hundredfold [1]. Both endogenously produced and exogenous ethylene is known to regulate the accumulation of specific plant mRNAs, as well as control the rate of transcription of specific plant genes [2,3]. Therefore, it is believed that the stress-related ethylene is a signal for plants to activate defense mechanisms. Although endogenously produced stress ethylene has been postulated to have a role in the regulation of stress adaptation reactions, it is not known to what extent a higher capacity to produce ethylene in stress conditions reflects a better chance to cope with a stress. No data has been presented yet to show the range of endogenous ethylene production intensity over which response reactions are mediated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, F.B., Morgan, P.W., and Saltveit, M.E. (1992) Ethylene in Plant Biology, Academic Press, San Diego.

    Google Scholar 

  2. Ecker, J.R. and Davis, R.W. (1987) Plant defense genes are regulated by ethylene, Proc. Natl Acad. Sci. USA 84, 5202–5206.

    Article  PubMed  CAS  Google Scholar 

  3. Boiler, T. (1991) Ethylene in pathogenesis and disease resistance, in A.K. Mattoo and J.C. Suttle (eds.), The Plant Hormone Ethylene, CRC Press, Boca Raton, pp. 293–314.

    Google Scholar 

  4. Hendry, G.A.F. and Crawford, R.M.M. (1994) Oxygen and environmental stress in plants-an overview, Proc. Royal Soc. Edinburgh 102B, 1–10.

    Google Scholar 

  5. Elstner, E.F. and Osswald, W. (1994) Mechanisms of oxygen activation during plant stress, Proc. Royal Soc. Edinburgh 102B, 131–154.

    Google Scholar 

  6. Inze, D. and Van Montagu, M. (1995) Oxidative stress in plants, Curr. Opin. Biol. 6, 153–158.

    Article  CAS  Google Scholar 

  7. Puntarulo, S. (1994) Effect of oxidative stress during imbibition of soybean embryonic axes, Proc. Royal Soc. Edinburgh 102B, 279–286.

    Google Scholar 

  8. Puntarulo S., Sanchez, R.A and Boveris, A. (1988) Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination, Plant Physiol. 86, 626–630.

    Article  PubMed  CAS  Google Scholar 

  9. Brennan, T. and Frenkel, C. (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear, Plant Physiol 59, 411–416.

    Article  PubMed  CAS  Google Scholar 

  10. Irigoyen, J.J., Emerich, D.W. and Sanchez-Diaz, M. (1992) Alfalfa leaf senescence induced by drought stress: photosynthesis, hydrogen peroxide metabolism, lipid peroxidation, and ethylene evolution, Physiol. Plant 84, 67–72.

    Article  CAS  Google Scholar 

  11. Apostol I., Heinstein, P.F. and Low, P.S. (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: role in defense and signal transduction, Plant Physiol. 90, 109–116.

    Article  PubMed  CAS  Google Scholar 

  12. Levine A., Tenhaken R., Dixon, R. and Lamb, C. (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response, Cell 79, 583–593.

    Article  PubMed  CAS  Google Scholar 

  13. Prasad, T.K., Anderson, M.D., Martin, B.A. and Stewart, C.R. (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide, Plant Cell 6, 65–74.

    PubMed  CAS  Google Scholar 

  14. Okuda T., Matsuda Y., Yamanaka, A. and Sagisaka, S. (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment, Plant Physiol. 97, 1265–1267.

    Article  PubMed  CAS  Google Scholar 

  15. Yahraus T., Chandra S., Legendre, L. and Low, P.S. (1995) Evidence for a mechanically induced oxidative burst., Plant Physiol. 109, 1259–1266.

    PubMed  CAS  Google Scholar 

  16. Sylvestre I., Droillard, M.-J., Bureau, J.M. and Paulin, A. (1989) Effects of the ethylene rise on the peroxidation of membrane lipids during the senescence of cut carnations, Plant Physiol. Biochem. 27, 407–413.

    CAS  Google Scholar 

  17. Chen Z., Silva, H. and Klessig, D.F. (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid, Science 262, 1883–1886.

    Article  PubMed  CAS  Google Scholar 

  18. May, M.J., Hammond-Kosack, K.E. and Jones, J.D.G. (1996) Involvement of reactive oxygen species, glutathione metabolism, and lipid peroxidation in the Cf-gene-dependent defense response of tomato cotyledons induced by race-specific elicitors of Cladosporium fulvum, Plant Physiol. 110, 1367–1379.

    PubMed  CAS  Google Scholar 

  19. Hammond-Kosack, K.E., Silverman P., Raskin, I. and Jones, J.D.G. (1996) Race-specific elicitors of Cladosporium fulvum induce changes in cell morphology and the synthesis of ethylene and salicylic acid in tomato plants carrying the corresponding Cf disease resistance gene, Plant Physiol. 110, 1381–1394.

    PubMed  CAS  Google Scholar 

  20. Ievinsh, G. and Tillberg, E. (1995) Stress-induced ethylene biosynthesis in pine needles: a search for the putative 1-aminocyclopropane-1-carboxylic acid-independent pathway, J. Plant Physiol. 145, 308–314.

    Article  CAS  Google Scholar 

  21. Ievinsh, G. (1996) Ethylene and Peroxidases in the Control of Plant Development and Adaptation, Habilitation Theses, University of Latvia,6Riga.

    Google Scholar 

  22. Frenkel, C. and Brennan, T. (1977) Upsurge in respiration and peroxide formation in potato tubers as influenced by ethylene, propylene, and cyanide, Plant Physiol. 59, 411–416.

    Article  PubMed  Google Scholar 

  23. Smith, J.J., Zhang, Z.H., Schofield, C.J., John, P. and Baldwin, J.E. (1994) Inactivation of 1-aminocyclopropane-1-carboxylate (ACC) oxidase, J. Exp. Bot. 45, 521–527.

    Article  CAS  Google Scholar 

  24. Asada, K. (1992) Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants, Physiol. Plant. 85, 235–241.

    Article  CAS  Google Scholar 

  25. Droillard, M.-J., Roudet-Mayer, M.A., Bureau, J.-M. and Lauriere, C. (1993) Membrane-associated and soluble lipoxygenase isoforms in tomato pericarp. Characterization and involvement in membrane alterations, Plant Physiol. 103, 1211–1219.

    PubMed  CAS  Google Scholar 

  26. Creelman, R.A. and Mullet, J.E. (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress, Proc. Natl. Acad. Sci. USA 92, 4114–4119.

    Article  PubMed  CAS  Google Scholar 

  27. Ievinsh, G. (1992) Soluble lipoxygenase activity in rye seedlings as related to endogenous and exogenous ethylene and wounding, Plant Sci. 82, 155–159.

    Article  Google Scholar 

  28. Hildebrand, D.F. (1989) Lipoxygenases, Physiol. Plant. 76, 249–253.

    Article  CAS  Google Scholar 

  29. Bell, E. and Mullet, J.E. (1993) Characterization of an Arabidopsis lipoxygeanse gene responsive to methyl jasmonate and wounding, Plant Physiol. 103, 1133–1137.

    Article  PubMed  CAS  Google Scholar 

  30. Bosquet, J.F. and Thimann, K.V. (1984) Lipid peroxidation forms ethylene from 1-aminocyclopropane-1-carboxylic acid and may operate in leaf senescence, Proc. Natl. Acad. Sci. USA 81, 1724–1727.

    Article  Google Scholar 

  31. Kacperska, A. and Kubacka-Zebalska, M. (1989) Formation of stress ethylene depends both on ACC synthesis and on the activity of free radical-generating system, Physiol. Plant. 77, 231–237.

    Article  CAS  Google Scholar 

  32. Kende, H (1993) Ethylene biosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 283–307.

    Article  CAS  Google Scholar 

  33. Mattoo, AK., Baker, J.E. and Moline, H.E. (1986) Induction by copper ions of ethylene production in Spirodela oligorrhiza: evidence for a pathway independent of 1-aminocyclopropane-1-carboxylic acid, J. Plant Physiol. 123, 193–202.

    Article  CAS  Google Scholar 

  34. Chen, Y.-M., Tabner, B.J. and Wellburn, A.R. (1990) ACC-independent ethylene formation in brown Norway spruce needles involves organic peroxides rather than hydroperoxides as possible precursors, Physiol. Mol. Plant Pathol. 37, 323–337.

    Article  CAS  Google Scholar 

  35. Ievinsh, G. (1992) Characterization of the peroxidase system in winter rye seedlings: compartmentation and dependence on leaf development and hydrogen donors used, J. Plant Physiol. 140, 257–263.

    Article  Google Scholar 

  36. Cakmak I., Strbac, D. and Marschner, H. (1993) Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds, J. Exp. Bot. 44, 127–132.

    Article  CAS  Google Scholar 

  37. De Gara L., De Tullio M., Paciolla C., Liso, R. and Arrigoni, O. (1993) Cytosolic ascorbate peroxidase in angiosperms and the different expressions of its isoforms in maize embryos during germination, in K.G. Welinder, S.K. Rasmussen, C, Penel and H. Greppin (eds.), Plant Petroxidases: Biochemistry and Physiology, University of Copenhagen and University of Geneva, pp. 251–255.

    Google Scholar 

  38. Mehlhorn, H. (1990) Ethylene-promoted ascorbate peroxidase activity protects plants against hydrogen peroxide, ozone and paraquat, Plant Cell Environ. 13, 971–976.

    Article  CAS  Google Scholar 

  39. Irigoyen, J.J., Emerich, D.W. and Sanchez-Diaz, M. (1992) Alfalfa leaf senescence induced by draught stress: photosynthesis, hydrogen peroxide metabolism, lipid peroxidation and ethylene evolution, Physiol. Plant. 84, 67–72.

    Article  CAS  Google Scholar 

  40. Mittler R., Pitcher, L.H. and Zilinskas, B.A. (1993) Molecular biology of pea cytosolic ascorbate peroxidase and its response to oxidative stress, in K.G. Welinder, S.K. Rasmussen, C, Penel and H. Greppin (eds.), Plant Peroxidases: Biochemistry and Physiology, University of Copenhagen and University of Geneva, pp. 263–270.

    Google Scholar 

  41. Ievinsh G., Valcina A. and Ozola, D. (1995) Induction of ascorbate peroxidase activity in stressed pine (Pinus sylvestris L.) needles: a putative role for ethylene, Plant Sci. 112, 167–173.

    Article  CAS  Google Scholar 

  42. Mittler, R. and Zilinskas, B.A. (1992) Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase, J. Biol. Chem. 267, 21802–21807.

    PubMed  CAS  Google Scholar 

  43. Mittler, R. and Tel-Or, E. (1991) Oxidative stress response and shock proteins in the unicellular Cyanobacterium synechococcus R2 (PCC-7942), Arch. Microbiol.155, 125–1

    Article  CAS  Google Scholar 

  44. Zheng, X. and van Huystee, R.B. (1992) Anionic peroxidase catalysed ascorbic acid and IAA oxidation in the presence of hydrogen peroxide: a defence system against peroxidative stress in peanut plant, Phytochemistry 31, 1895–1898.

    Article  CAS  Google Scholar 

  45. Arrigoni, O. (1994) Ascorbate system in plant development, J. Bioenerget. Biomembr. 26, 407–419.

    Article  CAS  Google Scholar 

  46. Inaba A., Gao, J.P. and Nakamura, R. (1991) Induction by electric currents of ethylene biosynthesis in cucumber (Cucumis sativus L.) fruit, Plant Physiol. 97, 1161–1165.

    Article  PubMed  CAS  Google Scholar 

  47. Saltveit, M.E. and Dilley, D.R. (1978) Rapidly induced wound ethylene from excised segments of etiolated Pisum sativum L., cv. Alaska. I. Characterization of the response, Plant Physiol. 61, 447–450.

    Article  PubMed  CAS  Google Scholar 

  48. Tittle, F.L., Goudey, J.S. and Spencer, M.S. (1990) Effect of 2,4-dichlorophenoxyacetic acid on endogenous cyanide, beta-cyanoalanine synthase activity, and ethylene evolution in seedlings of soybean and barley, Plant Physiol. 94, 1143–1148.

    Article  PubMed  CAS  Google Scholar 

  49. Yu, Y.B. and Yang, S.F. (1980) Biosynthesis of wound ethylene, Plant Physiol. 66, 281–285.

    Article  PubMed  CAS  Google Scholar 

  50. Bucher, J.B. (1981) SO2-induced ethylene evolution of forest tree foliage, and its potential use as stress-indicator, Eur. J. For. Path. 11, 369–373.

    Article  CAS  Google Scholar 

  51. Nanaiah, G.K. and Anderson, J.A. (1991) Electrolyte leakage and evolution of ethylene and ethane from pepper leaf disks following temperature stress and fatty acid infiltration, J. Amer. Soc. Hort. Sci. 117, 846–851.

    Google Scholar 

  52. Langebartels C., Kerner K., Leonardi S., Schraudner M., Trost M., Heller, W. and Sandermann, H. (1991) Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco, Plant Physiol. 95, 882–889.

    Article  PubMed  CAS  Google Scholar 

  53. Rakitina, T.Y., Vlasov, P.V., Jalilova, F.K. and Kefeli, V.I. (1994) Abscisic acid and ethylene in mutants of Arabidopsis thaliana differing in their resistance to ultraviolet (UV-B) radiation stress, Russ. J. Plant Physiol. 41, 682–686.

    CAS  Google Scholar 

  54. Morgan, P.W., He, C.J., De Greef, J.A. and De Proft, M.P. (1990) Does water deficit stress promote ethylene synthesis by intact plants? Plant Physiol. 94, 1616–1624.

    Article  PubMed  CAS  Google Scholar 

  55. Arteca, R.N. and Schlagnhaufer, C. (1984) The effect of brassinosteroid and 2,4-D-L-amino acid conjugates on ethylene production by etiolated mung bean segments, Physiol. Plant. 62, 445–447.

    Article  CAS  Google Scholar 

  56. Riov, jJ and Yang, S.F. (1982) Autoinhibition of ethylene production in citrus peel discs. Suppression of 1-aminocyclopropane-1-carboxylic acid synthesis, Plant Physiol. 69, 687–690.

    Article  PubMed  CAS  Google Scholar 

  57. Kim, W.T., Silverstone A., Yip, W.K., Dong, J.G. and Yang, S.F. (1992) Induction of 1-aminocyclopropane-1-carboxylate synthase mRNA by auxin in mung bean hypocotyls and cultured apple shoots, Plant Physiol. 98, 465–471.

    Article  PubMed  CAS  Google Scholar 

  58. Wang, T.-W. and Arteca, R.N. (1992) Effects of low O2 root stress on ethylene biosynthesis in tomato plants (Lycopersicon esculentum Mill cv Heinz 1350), Plant Physiol. 98, 97–100.

    Article  PubMed  CAS  Google Scholar 

  59. Rodecap, K.D. and Tingey, D.T. (1983) The influence of light on ozone-induced 1-aminocyclopropane-1-carboxylic acid and ethylene production from intact plants, Z. Pflanzenphysiol. 110, 419–427.

    CAS  Google Scholar 

  60. Fuhrer, J. (1985) Ethylene production and premature senescence of needles from fir trees (Abies alba), Eur. J. For. Path. 15, 227–236.

    Article  CAS  Google Scholar 

  61. Pennazio, S. and Roggero, P. (1992) Effects of free radical scavengers on stress ethylene in soybean leaves hypersensitively reacting to tobacco necrosis virus, Ann. Bot. 69, 437–439.

    CAS  Google Scholar 

  62. Chappell J., Hahlbrock, K. and Boller, T. (1984) Rapid induction of ethylene biosynthesis in cultured parsley cells by fungal elicitor and its relationship to the induction of phenylalanine ammonia-lyase, Planta 161, 475–480.

    Article  CAS  Google Scholar 

  63. Bressan, R.A., LeCureux L., Wilson, L.G. and Filner, P. (1979) Emission of ethylene and ethane by leaf tissue exposed to ijurious concentrations of sulfur dioxide or bisulfite ion, Plant Physiol. 63, 924–930.

    Article  PubMed  CAS  Google Scholar 

  64. Kimmerer, T.W. and Kozlowski, T.T. (1982) Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress, Plant Physiol. 69, 840–847.

    Article  PubMed  CAS  Google Scholar 

  65. Telewski, F.W. and Jaffe, M.J. (1986) Thigmomorphogenesis: the role of ethylene in the response of Pinus taeda and Abies fraseri to mechanical perturbation, Physiol. Plant. 66, 211–218.

    Article  PubMed  CAS  Google Scholar 

  66. Telewski, F.W. (1990) Growth, wood density, and ethylene production in response to mechanical perturbation in Pinus taeda, Can. J. Forest Res. 20, 1277–1282.

    Google Scholar 

  67. Ievinsh, G. and Kreicbergs, O. (1992) Endogenous rhythmicity of ethylene production in growing intact cereal seedlings, Plant Physiol. 100, 1389–1391.

    Article  PubMed  CAS  Google Scholar 

  68. Namboodiri, K.K. and Beck, C.B. (1968) A comparative study of the primary vascular system of conifers. I. Genera with helical phyllotaxis, Amer. J. Bot. 55, 447–457.

    Article  Google Scholar 

  69. Acaster, M.A. and Kende, H. (1983) Properties and partial purification of 1-aminocyclopropane-1-carboxylate synthase, Plant Physiol. 72, 139–145.

    Article  PubMed  CAS  Google Scholar 

  70. Elstner, E.F., Wagner, G.A. and Schutz, W. (1988) Activated oxygen in green plants in relation to stress situations, Curr. Top. Plant Biochem. Physiol. 7, 159–187.

    Google Scholar 

  71. Henstrand, J.M. and Handa, A.K. (1989) Effect of ethylene action inhibitors upon wound-induced gene expression in tomato pericarp, Plant Physiol. 91, 157–162.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ievinsh, G., Ozola, D. (1997). Ethylene and the Defense Against Endogenous Oxidative Stress in Higher Plants. In: Kanellis, A.K., Chang, C., Kende, H., Grierson, D. (eds) Biology and Biotechnology of the Plant Hormone Ethylene. NATO ASI Series, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5546-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5546-5_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6336-4

  • Online ISBN: 978-94-011-5546-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics