Skip to main content

Ethylene Synthesis and a Role in Plant Responses to Different Stressors

  • Chapter
Biology and Biotechnology of the Plant Hormone Ethylene

Part of the book series: NATO ASI Series ((ASHT,volume 34))

Abstract

Most of current knowledge concerning ethylene synthesis and action comes from studies on ethylene involvement in control of plant growth and development. Within this context, phenomena such as embryogenesis, germination, hypocotyl hook opening, leaf abscission and senescence and most of all - fruit ripening have been extensively studied. On the other hand, there is an ample evidence that different stress-evoking factors (stressors), such as pathogen attack, wounding, mechanical perturbations or impedance, anaerobiosis, waterlogging and submergence, desiccation, chilling, freezing, salt stress, heavy metals, ozone, electric currents, certain herbicides (Table 1) induce the burst of ethylene, which could be observed in a relatively short time, depending on the stress factor and the way of its application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apelbaum A., Burgoon, A.C., Anderson, J.D., Lieberman M., Ben-Arie R. and Mattoo, A.K. (1981) Polyamines inhibit biosynthesis of ethylene in higher plant tissues and fruit protoplast, Plant Physiol. 68, 453–456.

    Article  PubMed  CAS  Google Scholar 

  2. Bailey, B.A., Dean, J.F.D. and Anderson, J.A. (1990) An ethylene biosynthesis-inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv Xanthi leaves, Plant Physiol. 94, 1849–1854.

    Article  PubMed  CAS  Google Scholar 

  3. Bollmark, M. and Elliason, L. (1990) Ethylene accelerates the breakdown of cytokinins and thereby stimulates rooting in Norway spruce hypocotyl cuttings, Physiol Plant. 80, 534–540.

    Article  CAS  Google Scholar 

  4. Boyer N., Desbiez, M-O., Hofinger, M. and Gaspar, Th. (1983) Effect of lithium on thigmomorphogenesis in Bryonia dioica. Ethylene production and sensitivity, Plant Physiol 72, 522–525.

    Article  PubMed  CAS  Google Scholar 

  5. Boyer N., De Jaeger G., Bon, M.-C. and Gaspar, Th. (1986) Cobalt inhibition of thigmomorphogenesis in Bryonia dioica: possible role and mechanism of ethylene production, Physiol. Plant. 67, 552–556.

    Article  CAS  Google Scholar 

  6. Bowler, C. and Chua, N.-H. (1994) Emerging themes of plant signal transduction, The Plant Cell 4, 1529–1541.

    Google Scholar 

  7. Brederode, F.Th., Linthorst, H.J.M. and Bol, J.F. (1991) Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding, Plant Mol. Biol. 17, 1117–1125.

    Article  PubMed  CAS  Google Scholar 

  8. Ceverry, J.L., Pouliquen J., Le Guyader, H. and Marcellin, P. (1988) Calcium regulation of exogenous and endogenous 1-aminocyclopropane acid bioconversion to ethylene, Physiol Plant. 74, 53–57.

    Article  Google Scholar 

  9. Chang, P-F.L., Cheah K., Narasimhan, M.L., Hasegawa, P. M. and Bressan, R.A. (1995) Osmotin gene expression is controlled by elicitor synergism, Physiol Plant. 95, 620–626.

    Article  CAS  Google Scholar 

  10. Chen, Q. G. and Bleecker, A. (1995) Analysis of ethylene signal transduction kinetics associated with seedling-growth response and chitinase induction in wild-type and mutant Arabidopsis, Plant Physiol 108, 597–607.

    Article  PubMed  CAS  Google Scholar 

  11. Chen, Z. and Klessig, D.F. (1991) Identification of a soluble salicylic binding protein that may function in signal transduction in the plant disease resistance response, Proc. Natl. Acad. Sci. USA 88, 8179–8183.

    Article  PubMed  CAS  Google Scholar 

  12. Chen Z., Silva, H. and Klessig, D.F. (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid, Science 262, 1883–1886.

    Article  PubMed  CAS  Google Scholar 

  13. Chrominski A., Bhat, R.B., Weber, D.J. and Smith, B.N. (1988) Osmotic stress-dependent conversion of 1-aminocyclopropane-1-carboxylic acid in the halophyte Allenrolfea occidentalis, Envir. Exp. Bot. 128, 171–174.

    Article  Google Scholar 

  14. Chrominski A., Halls S., Weber, D.J. and Smith, B. (1989) Proline affects ACC to ethylene conversion under salt and water stresses in the halophyte Allenrolfea occidentalis, Envir. Exp. Bot.. 29, 359–363.

    Article  CAS  Google Scholar 

  15. Clark K., Jirage D., Wang, X.. and Chang, C. (1996) Two-component regulators in ethylene perception and signal transduction, NATO-ARW, Biology and Biotechnology of the Plant Hormone Ethylene, June 9–13, Chania, Crete, Greece

    Google Scholar 

  16. Drolet G. F., Dumbroff, E.B., Legge, R.L. and Thompson, J. E. (1986) Radical scavenging properties of poly amines, Phytochemistry 25, 367–371.

    Article  CAS  Google Scholar 

  17. Dutta, S. and Biggs, R. H. (1991) Regulation of ethylene biosynthesis in citrus leaves infected with Xanthomonas campestris pv. citri, Physiol. Plant. 82, 225–230.

    Article  CAS  Google Scholar 

  18. Ecker, J.R. and Davis, R.W. (1987) Plant defense genes are regulated by ethylene, Proc. Natl. Acad. Sci. USA 86, 1539–1542.

    Google Scholar 

  19. Ecker J., Roman G., Rothenberg,, M., Lehman A., Lubarsky B., Chao Q., Raz V., Alonso, J.M., Nourizadech, S.D. and Solano, R. (1996) Genes and gene interactions controlling ethylene signal transduction, NATO-ARW, Biology and Biotechnology of the Plant Hormone Ethylene, June 9-13, Chania, Crete, Greece

    Google Scholar 

  20. Elstner, E.F. and Konze, J.R. (1976) Effect of point freezing on ethylene and ethane production by sugar leaf disks, Nature 263, 351–352.

    Article  CAS  Google Scholar 

  21. English, Ph. J., Lycett G. W., Roberts, J. A and Jackson, M. B. (1995) Increased 1-aminocyclopropane-1-carboxylic acid oxidase activity in shoots of flooded tomato plants raises ethylene production to physiologically active level, Plant Physiol. 109, 1435–1440.

    PubMed  CAS  Google Scholar 

  22. Evenson, K. B. (1984) Calcium effects on ethylene and ethane production and 1-aminocyclopropane-1-carboxylic acid content in potato disks, Physiol. Plant. 60, 125–128.

    Article  Google Scholar 

  23. Foyer, C.H., Lelandais, M. and Kunert, K. (1994) Photooxidative stress in plants, Physiol. Plant. 92, 696–717.

    Article  CAS  Google Scholar 

  24. Fuhrer J., Kaur-Sawhney, R, Shih, L.M. and Galston, W. (1982) Effects of exogenous 1,3-diaminopropane and spermidine on senescence of oat leaves. II. Inhibition of ethylene biosynthesis and possible mode of action, Plant Physiol. 70, 1597–1600.

    Article  PubMed  CAS  Google Scholar 

  25. Gallardo, M, Matilla, A. and Sanchez-Calle, I.M. (1992) Effects of spermine, abscisic acid and temperature upon ethylene production in Cicer arietinum seeds, Plant Physiol. Biochem. 30, 19–27.

    CAS  Google Scholar 

  26. Gaspar, Th., Penel C., Castillo, F.J. and Greppin H. (1985) A two step control of basic and acidic peroxidases and its significance for growth and development, Physiol Plant. 64, 418–423.

    Article  CAS  Google Scholar 

  27. Glick, R.E., Schlagnhaufer, C.D., Arteca, R. and Pell, E.J. (1995) Ozone-induced ethylene emission accelerates the loss of ribulose-1,5-bisphosphate carboxylase/oxygenase and nuclear-encoded mRNAs in senescing potato leaves, Plant Physiol. 109, 891–898.

    PubMed  CAS  Google Scholar 

  28. Gomez-Lim M., Vald-Lopez V., Cruz-Hemandez, A. and Saucedo-Arias, L.J. (1993) Isolation and characterization of a gene involved in ethylene biosynthesis from Arabidopsis thaliana, Gene 134, 217–221.

    CAS  Google Scholar 

  29. Gora, L. and Clijsters, H. (1989) Effect of copper and zinc on the ethylene metabolism in Phaseolus vulgaris L., in: H. Clijstres et al. (eds), Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants,. Kluwer Academic Publishers, Dordrecht, pp. 219–228.

    Chapter  Google Scholar 

  30. Goren, R. and Siegel, S.M. (1976) Mercury-induced ethylene formation and abscission in citrus and coleus plants, Plant Physiol. 57, 628–631.

    Article  PubMed  CAS  Google Scholar 

  31. Gude, H. and van der Plas, L.H.W. (1985) Endogenous ethylene formation and the development of the alternative pathway in potato tuber discs, Physiol. Plant. 65, 57–62.

    Article  CAS  Google Scholar 

  32. Hall, J.Ch., Bassi P. K., Spencer, M. S. and Van den Born, W.H. (1985) An evaluation of the role of ethylene in herbicidal injury induced by picloram or clopyralid in rape seed and sunflower plants, Plant Physiol 79, 18–23.

    Article  PubMed  CAS  Google Scholar 

  33. Harber, R.M. and Fuchigami, L.H. (1989) Ethylene-induced stress resistance, in: P.H. Li (ed.), Low Temperature Stress Physiology in Crops, CRC Press Inc., Boca Raton, Florida, pp. 81–90.

    Google Scholar 

  34. Hogsett, W.E., Raba, R.M. and Tingey, D.T. (1981) Biosynthesis of stress ethylene in soybean seedlings: Similarities to endogenous ethylene biosynthesis, Physiol Plant 53, 307–314.

    Article  CAS  Google Scholar 

  35. Hon, W-C., Griffith M., Mlynarz A., Kwok, Y.C. and Yang, D.S.C. (1995) Antifreeze proteins in winter rye are similar to pathogenesis-related proteins, Plant Physiol. 109, 879–889.

    Article  PubMed  CAS  Google Scholar 

  36. Hoson T., Maeda S., Sakaguchi K., Onishi, H. and Ohta, H. (1990) Changes in osmotic pressure and cell wall properties during auxin-and ethylene-induced growth of intact coleoptiles of rice, Physiol Plant. 78, 277–284.

    Article  CAS  Google Scholar 

  37. Ievinsh, G. (1992) Soluble lipoxygenase activity in rye seedlings as related to endogenous and exogenous ethylene and wounding, Plant Sci. 82, 155–159.

    Article  Google Scholar 

  38. Ievinsh, G. (1996) Ethylene synthesis and the defense against endogenous oxidative stress, in A.K. Kanellis, C. Chang, H. Kende, D. Grierson (ed.), Biology and Biotechnology of the Plant Hormone Ethylene, Kluwer Academic Publishers, Dordrecht, (in press).

    Google Scholar 

  39. Ievinsh, G. and Romanovskaya, O.I. (1991) Accelerated lignificationn as a possible mechanism of growth inhibition in winter rye seedlings caused by ethefon and 1-aminocyclopropane-1-carboxylic acid, Plant Physiol. Biochem. 29, 327–331.

    Google Scholar 

  40. Inaba A., Gao, J. P. and Nakamura, R. (1991) Induction by electric currents of ethylene biosynthesis in cucumber (Cucumis sativus L.) fruit, Plant Physiol. 97, 1161–1165.

    Article  PubMed  CAS  Google Scholar 

  41. Ishige F., Yamazaki K., Mori, H. and Imaseki, H. (1991) The effects of ethylene on the coordinated synthesis of multiple proteins: accumulation of an acidic chitinase and a basic glycoprotein induced by ethylene in leaves of Azuki bean, Vigna angularis, Plant Cell Physiol. 32, 681–690.

    CAS  Google Scholar 

  42. Jackson, M. B. (1993) Are plant hormones involved in root to shoot communication?, Adv. Bot. Res. 19, 103–187

    Article  CAS  Google Scholar 

  43. Jackson, M.B. (1985) Ethylene and responses of plants to soil waterlogging and submergence, Annu. Rev. Plant Physiol 36, 145–174.

    Article  CAS  Google Scholar 

  44. Jackson, M.B. (1996) Regulation of ethylene production by ACC oxidase during adaptive responses to flooding and submergence, NATO-ARW, Biology and Biotechnology of the Plant Hormone Ethylene, June 9-13, Chania, Crete, Greece

    Google Scholar 

  45. Jones, R. and Mitchell, C.A (1989) Calcium ion involvement in growth inhibition of mechanically stressed soybean (Glycine max) seedlings, Physiol. Plant. 76, 598–602.

    Article  PubMed  CAS  Google Scholar 

  46. Kacperska, A (1996) Are there common bases for plant responses to different stress factors?, in: F. Dubert and St. Grzesiak (eds.), Ecophysiological Aspects of Plant Responses to Stress Factors, (in Polish), Zaklad Fizjologii Roslin PAN, Krakow, Poland, in press.

    Google Scholar 

  47. Kacperska, A. and Kubacka-Zebalska, M. (1985) Is lipoxygenase involved in the formation of ethylene from ACC?, Physiol. Plant. 63, 399–405.

    Article  Google Scholar 

  48. Kacperska, A. and Kubacka-Zebalska, M. (1989) Formation of stress ethylene depends both on ACC synthesis and on the activity free radical-generating system, Physiol Plant. 77, 231–237.

    Article  CAS  Google Scholar 

  49. Kende, H. (1993) Ethylene biosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 283–307.

    Article  CAS  Google Scholar 

  50. Knight H., Trewavas, A.J. and Knight, M. (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation, The Plant Cell 8, 489–503.

    PubMed  CAS  Google Scholar 

  51. Reference omitted.

    Google Scholar 

  52. Lawton, K.A., Raghothama, K.G. Goldsbrough, P.B. and Woodson, W. (1990) Regulation of senescence-related gene expression in carnation flower petals by ethylene, Plant Physiol 93, 1370–1375.

    Article  PubMed  CAS  Google Scholar 

  53. Leslie C.A. and Romani R.J. (1988) Inhibition of ethylene biosynthesis by salicylic acid, Plant Physiol 88, 833–837.

    Article  PubMed  CAS  Google Scholar 

  54. Li N., Parsons, B.L., Liu, D. and Mattoo, A.K. (1992) Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines, Plant Mol. Biol. 18, 477–487.

    Article  PubMed  CAS  Google Scholar 

  55. Lincoln, J.E. and Fischer, R.L. (1988) Diverse mechanisms for the regulation of ethylene-inducible gene expression, Mol. Gen. Genet. 212, 71–75.

    Article  PubMed  CAS  Google Scholar 

  56. Marissen N., Kanneworff, W.A. and van der Plas, L.H.W. (1991). Effect of anareobiosis on ethylene production, respiration and flowering in iris bulbs, Physiol. Plant. 82, 465–473.

    Article  CAS  Google Scholar 

  57. McKeon T. A., Hoffman, N.E. and Yang, S.F. (1982) The effect of plant-hormone pretreatments on ethylene production and synthesis of 1-aminocyclopropane-1-carboxylic acid in water stressed wheat leaves, Planta 1255, 437–443.

    Article  Google Scholar 

  58. McKersie, B.D. and Leshem, Y. Y. (1994) Stress and Stress Coping in Cultivated Plants. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  59. Mehdy, M.C. (1994) Active oxygen species in plant defense against pathogens, Plant Physiol. 105, 467–472.

    PubMed  CAS  Google Scholar 

  60. Pennazio, S. and Roggero, P. (1991) Rapid ethylene production in soybean in response to the cupric ion, Annals of Botany 67, 247–249.

    CAS  Google Scholar 

  61. Raz, V. and Fluhr, R. (1992) Calcium requirement for ethylene-dependent responses, The Plant Cell 4, 1123–1130.

    PubMed  CAS  Google Scholar 

  62. Saniewski, M. (1996) The role of jasmonates in ethylene biosynthesis, NATO-ARW, Biology and Biotechnology of the Plant Hormone Ethylene, June 9-13, Chania, Crete, Greece

    Google Scholar 

  63. Sarquis J. I., Jordan, W.R. and Morgan, P.W. (1991) Ethylene evolution from maize (Zea mays L.) seedling roots and shoots in response to mechanical impedance, Plant Physiol. 96, 1171–1177.

    Article  PubMed  CAS  Google Scholar 

  64. Shibaoka, H. (1994) Plant hormone-induced changes in the orientation of cortical microtubules. Alterations in the cross-linking between microtubules and the plasma membrane, Annu. Rev. Plant Physiol Plant Mol. Biol. 45, 527–544.

    Article  CAS  Google Scholar 

  65. Smirnoff, N. and Cumbes, Q.J. (1989) Hydroxyl radical scavenging activity of compatible solutes, Phytochemistry 28, 1057–1060.

    Article  CAS  Google Scholar 

  66. Smith J. T., Ververidis, P. and John, P. (1992) Characterization of ethylene-forming enzyme partially purified from melon, Phytochemistry 31, 1485–1494.

    Article  CAS  Google Scholar 

  67. Smith, J.J., Zhang, Z.H., Schofield C., John, P. and Baldwin, J.E. (1994) Inactivation of 1-aminocyclopropane-1-carboxylate (ACC) oxidase. J. Experimental Botany 45, 521–527.

    Article  CAS  Google Scholar 

  68. Spanu, P. and Boiler, P. (1989) Ethylene biosynthesis in tomato plant affected by Phytophtora infestans, J.Plant Physiol.134, 533–5

    Article  CAS  Google Scholar 

  69. Steed, C.I. and Harrison, M.A. (1993) Regulation of ethylene synthesis after short-termed heat treatment in etiolated pea stems, Physiol Plant. 87, 103–107.

    Article  CAS  Google Scholar 

  70. Stegink, S.J. and Siedow J.N. (1986) Ethylene production from 1-aminocyclopropane-1-carboxylic acid in vitro: A mechanism for explaining ethylene production by a cell-free preparation from pea epicotyls, Physiol. Plant. 66, 625–631.

    Article  CAS  Google Scholar 

  71. Suttle, J.C. (1981) Effects of polyamines on ethylene production., Phytochemistry 20, 1477–1480.

    Article  CAS  Google Scholar 

  72. Sutherland, M.W. (1991) The generation of oxygen radicals during host plant responses to infection, Physiol Mol Plant Pathol. 38, 79–93.

    Article  Google Scholar 

  73. Taiz, L. Rayle, D.L. and Eisinger, W. (1983). Ethylene-induced lateral expansion in etiolated pea stems. The role of acid secretion, Plant Physiol. 73, 413–417.

    Article  PubMed  CAS  Google Scholar 

  74. Toppan A., Roby, D. and Esqurre-Tugaye, M.T. (1982) Cell surfaces in plant-microorganism interactions. II In vivo effect of ethylene on hydroxyproline-rich glycoprotein accumulation in the cell wall of diseased plants. Plant. Physiol. 70, 82–86.

    Article  PubMed  CAS  Google Scholar 

  75. Tudela, D. and Primo-Millo, E. (1992) 1-Aminocyclopropane-1-carboxylic acid transported from roots to shoots promotes leaf abscission in Cleopatra mandarin (Citrus reshni Hort, e. Tan.) seedlings rehydrated after water stress, Plant Physiol 100, 131–137.

    Article  PubMed  CAS  Google Scholar 

  76. Ververidis, P. and John, P. (1991) Complete recovery in vitro of ethylene-forming enzyme activity, Phytochemistry 30, 725–727.

    Article  CAS  Google Scholar 

  77. Wagner, A.M. and Krab, K. (1995) The alternative respiration pathway in plants: Role and regulation, Physiol. Plant 95, 318–325.

    Article  CAS  Google Scholar 

  78. Wang, C. Y. and Adams, D. O. (1980) Ethylene production by chilled cucumbers (Cucumis sativus L.), Plant Physiol. 66, 841–843.

    Article  PubMed  CAS  Google Scholar 

  79. Weiss, C. and Bevan, M. (1991) Ethylene and a wound signal modulate local and systemic transcription of win2 genes in transgenic potato plants, Plant Physiol 96, 943–951.

    Article  PubMed  CAS  Google Scholar 

  80. Weckx, J.E.J, and Clijsters, H.M.M. (1996) Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper, Physiol Plant. 96, 506–512.

    Article  CAS  Google Scholar 

  81. Yahraus T., Chandra S., Legendre, L. and Low, P.S. (1995) Evidence for a mechanically induced oxidative burst, Plant Physiol., 109, 1259–1266.

    PubMed  CAS  Google Scholar 

  82. Yang, S.F. and Dong, G. (1993) Recent progress in research of ethylene biosynthesis. Bot Bull S. Acad. Sin. 34, 89–101.

    CAS  Google Scholar 

  83. Yang, S.F. and Hoffman, N. E. (1984). Ethylene biosynthesis and its regulation in higher plants, Annu. Rev. Plant Physiol. 35, 155–189.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kacperska, A. (1997). Ethylene Synthesis and a Role in Plant Responses to Different Stressors. In: Kanellis, A.K., Chang, C., Kende, H., Grierson, D. (eds) Biology and Biotechnology of the Plant Hormone Ethylene. NATO ASI Series, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5546-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5546-5_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6336-4

  • Online ISBN: 978-94-011-5546-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics