Skip to main content

Passive Microwave Remote Sensing of Soils and Vegetation — Experimental and Modeling Results

  • Chapter
Microwave Physics and Techniques

Part of the book series: NATO ASI Series ((ASHT,volume 33))

Abstract

Microwave remote sensing systems are widely used for remote sensing of the earth surface due to their nearly all-weather, day/night capability and relatively large penetration depth. Microwave remote sensing techniques have been applied effectively for estimating the surface soil moisture in a variety of environmental conditions [14]. Remote sensing of forest canopies using active and passive microwave systems is an advanced tool for ecosystem monitoring [58]. Microwave radiometers could give additional information about dense forest biomass, where other remote sensing systems (optical radiometers, SAR) suffer the early saturation effect [7,8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ulaby, F. T., Moore, R. K., and Fung, A. K. (1986) Micro wave Remote Sensing: Active and Passive, Vol. III, From Theory to Applications, Artech House, Dedham, MA.

    Google Scholar 

  2. Jackson, T.J. and Schmugge, T.J. (1989) Passive microwave remote sensing system for soil moisture: some supporting research, IEEE Trans. Geosci. Remote Sensing 27,225–235.

    Article  Google Scholar 

  3. Kostov, K.G. (1993) Passive microwave remote sensing of soil moisture: Experimental and modelling results, Adv. in Space Research 13,105–114.

    Article  Google Scholar 

  4. Kostov, K. and Jackson, T. (1993) Estimating profile soil moisture from surface layer measurements-a review, in Proc. SPIESymp. on Aerospace and Remote Sens. vol. 1941,125–136.

    Google Scholar 

  5. Maetzler, C. (1994) Microwave transmissivity of a forest canopy: experiments made with a beech, Remote Sens. Environ. 48, 172–180.

    Article  Google Scholar 

  6. Vichev, B.I., Krasteva, E.N., and Kostov, K.G. (1995) Study of seasonal evolution of tree emission using zenith-looking microwave radiometers, in Proc. IGARSS’ 95, Florence, Italy, 10-14 July, 2, 981–983.

    Google Scholar 

  7. Imhoff, M. L. (1995) Radar backscatter and biomass saturation: ramifications for global biomass inventory, IEEE Trans. Geosci. Remote Sensing 33, 511–518.

    Article  Google Scholar 

  8. Ferrazzoli, P. and Guerriero, L. (1996) Passive microwave remote sensing of forests: a model investigation, IEEE Trans. Geosci. Remote Sensing 34, 433–443.

    Article  Google Scholar 

  9. Ulaby, F. T., Moore, R. K., and Fung, A. K. (1981) Microwave Remote Sensing: Active and Passive, Vol. I, Microwave Remote Sensing Fundamentals and Radiometry, Artech House.

    Google Scholar 

  10. Skou, N. (1989) Microwave Radiometer Systems: Design and Analysis, Artech House, Norwood, MA

    Google Scholar 

  11. Vichev, B.I., Kostov, K.G., and Krasteva, E.N. (1991) L-band microwave radiometers for soil moisture measurement: Adjustment, calibration and error analysis, in Proc. IGARSS’ 91, Helsinki, Finland, 769–772.

    Google Scholar 

  12. Vichev, B.I., Kostov, K.G., and Krasteva, E.N. (1992) Calibration procedure, linearity tests and error analysis of microwave Dicke-type radiometers, Bulg. J. Phys. 19, No. 3/4, 80–88.

    Google Scholar 

  13. Kostov, K.G., Vichev, B.I., Nedeltchev, N.M., Ribakov, J.V., and Vashukov, A.I. (1991) Field testing of L-band microwave radiometers for soil moisture measurements in noisy EM environment, in Proc. IGARSS’91, Helsinki, Finland, 739–742.

    Google Scholar 

  14. Reutov, E. and Shutko, A. (1986) Prior-knowledge-based soil moisture determination by microwave radiometry, Soviet J. of Remote Sens. 5, 100–125.

    Google Scholar 

  15. Reutov, E. and Shutko, A. (1990) Microwave spectroradiometry of water content of nonuniformly moistened soil with a surface transition layer, Soviet J. of Remote Sens. 6, 72–79.

    Google Scholar 

  16. Ijjas, G., Rao, K., and Rao, Y. (1991) Efficiency of 1.4 and 2.7 GHz radiometers data for the retrieval of soil moisture profile, in Proc. IGARSS '91, Helsinki, Finland, 765–768.

    Google Scholar 

  17. Jackson, T., Aleksa, J., Swift, C., O’Neill, P. and Kostov, K. (1994) Diurnal observations of soil moisture with passive microwave radiometers, in Proc. IGARSS’94, vol. III, pp. 1570–1572.

    Google Scholar 

  18. Costes, F. et al. (1994) Microwave radiometry of bare soils: Comparison of various emission models of layered media with measurements, in Proc. IGARSS'94, vol. III, pp. 1579–1581.

    Google Scholar 

  19. Kostov, K. G. and Vichev, B. I. (1995) Near-surface moisture profile effects on the microwave emission of bare soils, in Proc. IGARSS’ 95, Vol. 3, Florence, Italy, 1991–1993.

    Google Scholar 

  20. Wang, J. R. and Schmugge, T. J. (1980) An empirical model for the complex dielectric permittivity of soils as a function of water content, IEEE Trans. Geosci. Remote Sensing GRS-18, 288–295.

    Article  Google Scholar 

  21. Ulaby, F. T., Razani, M., and Dobson, M.C. (1983) Effects of vegetation cover on the microwave radiometric sensitivity to soil moisture, IEEE Trans. Geosci. Remote Sensing GE-21, 51–61.

    Article  Google Scholar 

  22. Ulaby, F. T. and El-Rayes, M.A. (1987) Microwave dielectric spectrum of vegetation-Part II: Dual-dispersion model, IEEE Trans. Geosci. Remote Sensing GE-25, 550–557.

    Article  Google Scholar 

  23. Maetzler, C. (1994) Microwave (1-100 GHz) dielectric model of leaves, IEEE Trans. Geosci. Remote Sensing 32, 947–949.

    Article  Google Scholar 

  24. Vichev, B.I. and Kostov, K.G. (1996) Estimation of leaf and branch area indexes of deciduous trees using dual-frequency microwave radiometric data, in Proc. NATO Advanced Research Workshop on Microwave Physics and Technique, Sozopol, Bulgaria, 30 Sept.-05 Oct. (this issue).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kostov, K.G., Vichev, B.I. (1997). Passive Microwave Remote Sensing of Soils and Vegetation — Experimental and Modeling Results. In: Groll, H., Nedkov, I. (eds) Microwave Physics and Techniques. NATO ASI Series, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5540-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5540-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6333-3

  • Online ISBN: 978-94-011-5540-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics