Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 335))

  • 1007 Accesses

Abstract

Metallocene catalysts are organometallic coordination compounds in which one or two cyclopentadienyl rings or substituted cyclopentadienyl rings are bonded to a central transition metal atom, as shown in Figure1. The nature and number of the rings and substituents (S), the type of transition metal (M) and its substituents (R), the type of the bridge, if present, and the cocatalyst type determine the catalytic behaviour of these organometallic compounds towards the polymerization of linear and cyclic olefins and diolefins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schut, J.H. (1996) Here’s the latest score on single-site catalysts, Plastic World, April 41–46.

    Google Scholar 

  2. Gupta, V.K., Satish, S., and Bhardwaj, I.S. (1994) Metallocene complexes of group 4 elements in the polymerization of monoolefins, J.M.S.- Rev. Macromol. Chem. Phys., C34 (3), 439–514.

    Article  CAS  Google Scholar 

  3. Huang, J. and Rempel, G.L. (1995) Ziegler-Natta catalysts for olefin polymerization: mechanistic insights from metallocene systems, Prog. Polym. Sci., 20 459–525.

    Article  CAS  Google Scholar 

  4. Reddy, S. S. and Sivaram, S. (1995) Homogeneous metallocene-methylaluminoxane catalyst systems for ethylene polymerization, Prog. Polym. Sci., 20 309–367.

    Article  CAS  Google Scholar 

  5. Soares, J.B.P. and Hanelec, A.E. (1995) Metallocene/Aluminoxane Catalysts for Olefin Polymerization. A Review, Polym. React. Eng., 3 (2), 131–200.

    CAS  Google Scholar 

  6. Hamielec, A.E. and Soares, J.B.P. (1996) Polymerization reaction engineering - Metallocene catalysts, Frog. Polym. Sci., accepted.

    Google Scholar 

  7. Cooper, W. (1976) Kinetics of polymerization initiated by Ziegler-Natta and related catalyst, in C.H. Bamford and C.F.H. Tipper (eds.), Chemical Kinetics, vol. 15, Elsevier, New York, pp.133–257.

    Google Scholar 

  8. Tait, P.J.T. (1989) Monoalkene polymerization: Ziegler-Natta and transition metal catalysts, in Sir G. Allen (ed.), Comprehensive Polymer Science, vol. 4, Pergamon Press, Oxford, pp. 1–25.

    Chapter  Google Scholar 

  9. Corradini, P., Busico, V., and Guerra, G. (1989) Monoalkene polymerization: stereospecificity, in Sir G. Allen (ed.), Comprehensive Polymer Science, vol. 4, Pergamon Press, Oxford, pp.29–50.

    Chapter  Google Scholar 

  10. Soares, J.B.P. and Hamielec, A.E. (1995) Fractionation of linear polyolefins by TREF, Polymer, 36 1639–1654.

    Article  CAS  Google Scholar 

  11. Soares, J.B.P. and Hamielec, A.E. (1995) General dynamic mathematical modelling of heterogeneous and homogeneous Ziegler-Natta copolymerization with multiple site types and mass and heat transfer resistances, Polym. React. Eng., 3 261–364.

    CAS  Google Scholar 

  12. Vickroy, V.V., Schneider, H., and Abbott, R.F. (1993) The separation of SEC curves of HDPE into Flory distributions, J. Appl. Polym. Sci., 50 551–554.

    Article  CAS  Google Scholar 

  13. Soares, J.B.P. and Hamielec, A.E. (1995) Deconvolution of chain length distributions of linear polymers made by multiple site type catalysts, Polymer, 36 2257–2263 (1995).

    Article  CAS  Google Scholar 

  14. Soares, J.B.P., Abbott, R.F., and Willis, J.N. (1996) A new methodology for studying multiple-site-type catalysts for the copolymerization of olefins, Macromol. Rapid Commun., submitted.

    Google Scholar 

  15. Welborn, H.C. Jr. (1993) Polymerization process using a new supported polymerization catalyst, U.S. Pat. 5,183–867.

    Google Scholar 

  16. Reichert, K. H. (1983) Polymerization of a-olefins with soluble Ziegler catalysts, in R.P. Quirk (ed.), Transition Metal Catalyzed Polymerization,vol. 4, Harwood, New York pp. 465–494.

    Google Scholar 

  17. Giannetti, E., Nicoletti, G.M., and Mazzocchi, R. (1985) Homogeneous Ziegler-Natta catalysis. II.Ethylene polymerization by IVB transition metal complexes/methyl aluminoxane catalyst, J. Polym. Sci.: Polym. Chem. Ed., 23 2117–2133.

    Article  CAS  Google Scholar 

  18. Sinn, H. and Kaminsky W. (1980) Ziegler-Natta Catalysis, Adv. Organomet. Chem., 18, 99–149.

    CAS  Google Scholar 

  19. Kaminsky, W. and Steiger, R. (1988) Polymerization of olefins with homogeneous zirconocene/alumoxane catalyst, Polyhedron,7, 2375–2381.

    Article  CAS  Google Scholar 

  20. Jordan, R.F., Bajgur, C.S., Willett, R., and Scott, B. (1986) Ethylene polymerization by a cationic dicyclopentadienylzirconium(IV) alkyl complex, J. Am. Chem. Soc., 108 7410–7411.

    Article  CAS  Google Scholar 

  21. Jordan, R.F. (1988) Cationic metal-alkyl olefin polymerization catalysts, J. Chem. Ed., 65 285–289.

    Article  CAS  Google Scholar 

  22. Kaminsky, W. (1991) Polymerization and copolymerization of olefins with metallocene/aluminoxane catalysts, Cat. Soc. Japan, 33 536–544.

    CAS  Google Scholar 

  23. Chien, J.C.W. and Razavi, A. (1988) Metallocene-methylaluminoxane catalyst for olefin polymerization.II.Bis-η5-(neomenthylcyclopentadienyl)zirconium dichloride, J. Polym. Sci.: Part A: Polym. Chem., 26 2369–2380.

    Article  CAS  Google Scholar 

  24. Chien, J.C.W.; Wang, B.P. (1988) Metallocene-methylaluminoxane catalyst for olefin polymerization.I.Trimethylaluminum as coactivator, J. Polym. Sei.: Part A: Polym. Chem., 26 3089–3102.

    Article  CAS  Google Scholar 

  25. Kaminsky, W. (1986) Preparation of special polyolefins from soluble zirconium compounds with aluminoxane as cocatalystin T. Keii and K. Soga (eds.) Catalytic Polymerization of Olefins, KodanshaElsevier, Tokio, pp. 293–304 (1986).

    Google Scholar 

  26. Kaminsky, W. and Luker, H. (1984) Influence of hydrogen on the polymerization of ethylene with homogeneous Ziegler system bis(cyclopentadienyl) zirconium dichloride/aluminoxane, Makromol. Chem. Rapid Commun., 5 225–228.

    Article  CAS  Google Scholar 

  27. Soares, J.B.P. and Hamielec, A.E. (1996) Kinetics of propylene polymerization with a non-supported heterogeneous Ziegler-Natta catalyst - Effect of hydrogen on rate of polymerization, stereoregularity, and molecular weight distribution, Polymer, accepted.

    Google Scholar 

  28. Fierro, R., Chien, J.C.W., and Rausch, M.D. (1994) Asymmetric zirconocene precursors for catalysis of propylene polymerization, J. Polym. Sci.: Part A: Polym. Chem., 32 2817–2824.

    Article  CAS  Google Scholar 

  29. Ewen, J.A. (1984) Mechanisms of stereochemical control in propylene polymerizations with soluble group 4B metallocene/methylaluminoxane catalysts, J. Am. Chem. Soc., 106 6355–6364.

    Article  CAS  Google Scholar 

  30. Cheng, H.N. and Ewen, J.A. (1989) 13C nuclear magnetic resonance characterization of poly(propylene) prepared with homogeneous catalysts, Makromol. Chem., 190 1931–1943.

    Article  CAS  Google Scholar 

  31. Elder, M.J., Razavi, A., and Ewen, J.A. (1992) Process and catalyst for producing syndiotactic polyolefins, U.S. Pat. 5,155,080.

    Google Scholar 

  32. Piccolrovazzi, P., Pino, P., Consiglio, G., Sironi, A., and Moret, M. (1990) Electronic effects in homogeneous indenylzirconium Ziegler-Natta catalysts, Organometallics, 9 3098–3105.

    Article  CAS  Google Scholar 

  33. Lee, I.M., Gauthier, W.J., Ball, J.M., Iyengas, B., and Collins, S. (1992) Electronic effects in Ziegler-Natta polymerization of propylene and ethylene using soluble metallocene catalysts, Organometallics, 112115–2122.

    Article  CAS  Google Scholar 

  34. Kaminsky, W. and Renner, F. (1993) High melting polypropylenes by silica-supported zirconocene catalysts, Makromol. Chem. Rapid Commun., 14 239–243.

    Article  CAS  Google Scholar 

  35. Chien, J.C.W. and He, D. (1991) Olefin copolymerization with metallocene catalysts. III. Supported metallocene/methylaluminoxane catalyst for olefin copolymerization, J. Polym. Sci.: Part A: Polym. Chem., 29 1603–1607.

    Article  CAS  Google Scholar 

  36. Kaminaka, M. and Soga, K. (1991) Polymerization of propene with the catalyst systems composed of Al2O3 or MgCI2 supported Et[IndH4]2ZrC12 and AIR3 (R = CH3, C2H5), Makromol. Chem. Rapid Commun., 12 367–372.

    Article  CAS  Google Scholar 

  37. Kaminaka, M. and Soga, K. (1992) Polymerization of propene with catalyst systems composed of Al2O3 or MgCl2-supported zirconocene and Al(CH3)3, Polymer, 33 1105–1107.

    Article  CAS  Google Scholar 

  38. Soga, K. and Kaminaka, M. (1993) Polymerization of propene with zirconocene-containing supported catalysts activated by common trialkylaluminiums, Makromol. Chem., 194 1745–1755.

    Article  CAS  Google Scholar 

  39. Hoel, E.L., Cozewith, C., and Byrne, G.D. (1994) Effect of diffusion on heterogeneous ethylene propylene copolymerization AIChE J., 40 (10), 1669–1684.

    Article  CAS  Google Scholar 

  40. Woo, T.K., Fan, L., and Ziegler, T. (1994) A density functional study of chain growing and chain terminating steps in olefin polymerization by metallocenes and constrained geometry catalysts, Organometallics, 13 2252–2261.

    Article  CAS  Google Scholar 

  41. Lai, S.Y., Wilson, J.R., Knight, G.W., Stevens, J.C., and Chum, P.W.S. (1993) Elastic substantially linear olefins,U.S. Patent 5,272,236.

    Google Scholar 

  42. Zakharov, V.A., Bukatov, G.D., and Yermakov, Y.F. (1983) On the mechanism of olefin polymerization by Ziegler-Natta catalysts, Adv. Polym. Sci., 56 61–100.

    Article  Google Scholar 

  43. Tait, P.J.T. and Watkins, N.D. (1989) Monoalkene polymerization mechanisms, in Sir G. Allen (ed.), Comprehensive Polymer Science, vol. 4, Pergamon Press, Oxford, pp.533–573.

    Chapter  Google Scholar 

  44. Ystenes, M. (1991) The trigger mechanism for polymerization of a-olefins with Ziegler-Natta catalysts: A new model based on interaction of two monomers at the transition state and monomer activation of the catalytic centers, J. Catal., 129 383–401.

    Article  CAS  Google Scholar 

  45. Dusseault, J.J.A. and Hsu, C.C. (1993) MgCI2 supported Ziegler-Natta catalysts for olefin polymerization: basic structure, mechanism, and kinetic behaviour, J.M.S.-Rev. Macromol. Sci., C33 103–145.

    Article  CAS  Google Scholar 

  46. Farina, M., Di Silvestro, G., and Terragni, A. (1995) A stereochemical and statistical analysis of metallocene-promoted polymerization, Macromol. Chem. Phys., 196 353–367.

    Article  CAS  Google Scholar 

  47. Hamielec, A.E., MacGregor, J.F., Penlidis, A. (1987) Multicomponent free-radical polymerization in batch, semi-batch and continuous reactors, Makromol. Chem., Macromol. Symp. 10/11 521–570.

    Article  Google Scholar 

  48. Resconi, L., Piemontesi, F., Franciscono, G., Abis, L., and Fiorani, T. (1992) Olefin polymerization at bis(pentamethylcyclopentadienyl)zirconium and -hafnium centers: chain-transfer mechanisms, J. Am. Chem. Soc., 114 1025–1032.

    Article  CAS  Google Scholar 

  49. Flory, P.J. (1953) Principles of Polymer Chemistry, Cornell University Press, Ithaca.

    Google Scholar 

  50. Soares, J.B.P. and Hamielec, A.E. (1996) Bivariate chain length and long chain branching distribution for copolymerization of olefins and polyolefin chains containing terminal double-bonds, Macromol. Theory Simul., in print.

    Google Scholar 

  51. Stockmayer, W.H. (1945) Distribution of chain lengths and composition in copolymers, J. Chem. Phys., 13 199–207.

    Article  CAS  Google Scholar 

  52. Soares, J.B.P. and Hamielec, A.E. (1995) Analyzing TREF data by Stockmayer’s bivariate distribution, Macromol. Theory Simul., 4 305–324.

    Article  CAS  Google Scholar 

  53. Noristi, L., Marchetti, E., Baruzzi, G., and Sgarzi, P. (1994) Investigation on the particle growth mechanism in propylene polymerization with MgC12 supported Ziegler-Natta catalysts, J. Polym. Sci.: Part A: Polym. Chem., 32 3047–3059.

    Article  CAS  Google Scholar 

  54. Soga, K., Yamagihara, H., and Lee, D.E. (1989) Effect of monomer diffusion in the polymerization of olefins over Ziegler-Natta catalysts, Makromol. Chem., 190 995–1006.

    Article  CAS  Google Scholar 

  55. Jaber, I.A. and Fink, G. (1994) TiC14/MgH2 supported Ziegler-type catalyst system, 3)New findings on the concentration of active sites in ethylene/1-hexene copolymerization, Macromol. Chem. Phys., 195 2491–2503.

    Article  CAS  Google Scholar 

  56. Schmeal, W.R.; Street, J.R. (1971) Polymerization in expanding catalyst particles, AIChE J., 17 1188–1197.

    Article  CAS  Google Scholar 

  57. Ray, W.H. (1988) Practical benefits form modelling olefin polymerization reactors in R.P. Quirk (ed.), Transition Metal Catalyzed Polymerization, Harwood, New York. pp.563–590.

    Google Scholar 

  58. Graessley, W.W. (1993) Physical Properties of Polymers, 2nd edition, American Chemical Society, Washington.

    Google Scholar 

  59. Soares, J.B.P. and Hamielec, A.E. (1996) Effect of reactor residence time distribution on the size distribution of polymer particles made with heterogeneous Ziegler-Natta and supported metallocene catalysts. A generic mathematical model, Macromol. Theory Simul., 4 1085–1104.

    Article  Google Scholar 

  60. Hermann, H.F. and Böhm, L.L. (1991) Particle forming process in slurry polymerization of ethylene with homogeneous catalysts, Polym. Commun.,32 58–61.

    CAS  Google Scholar 

  61. Koivumäki, J.; Lahti, M. Seppälä, J.V (1994) Polymerization of ethylene and 1-hexene with Cp2ZrC12- MAO catalyst in a heat balance reaction calorimeter,. Angew. Makromol. Chem., 221 117–125.

    Article  Google Scholar 

  62. Garbassi, F., Gila, L., and Proto, A. (1994) Metallocenes: New catalysts for new polyolefins, Polymer News, 19 367–371.

    CAS  Google Scholar 

  63. Langhauser, F., Kerth, J., Kersting, M., Kölle, P., Lilge, D., and Müller, P. (1994) Propylene polymerization with metallocene catalysts in industrial processes, Makromol. Chem., 223 155–164.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Soares, J.B.P., Hamielec, A.E. (1997). Metallocene Catalysts in Dispersed Media. In: Asua, J.M. (eds) Polymeric Dispersions: Principles and Applications. NATO ASI Series, vol 335. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5512-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5512-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6321-0

  • Online ISBN: 978-94-011-5512-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics