Skip to main content
  • 277 Accesses

Abstract

This paper reviews various mapping techniques used in dynamical astronomy. It is mostly dealing with symplectic mappings. It is shown that used mappings can be usually interpreted as symplectic integrators. It is not necessary to introduce any 8 functions it is just sufficient to split Hamiltonian into integrable parts. Actually it may be shown that exact mapping with δ function in the Hamiltonian may be non-symplectic. The application to the study of asteroid belt is emphasised but the possible use of mapping in planetary evolution studies, cometary and other problems is shortly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, V.I.: 1989 Mathematical methods of classical mechanics, Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo

    Book  Google Scholar 

  • Chirikov, B.V.: 1969, ‘Research concerning the theory of nonlinear resonance and stochasticity’, Preprint 267 of the Institute of Nuclear Physics, Novosibirsk (English Translation in it CERN Trans. 1971)

    Google Scholar 

  • Chirikov, B.V.: 1979, ‘A universal instability of many-dimensional oscillator systems’, Physics Reports 52, pp. 264–379

    Article  MathSciNet  ADS  Google Scholar 

  • Cordeiro, R. R., Gomes, R. S., Martins, R. V.: 1996 ‘A mapping for nonconservative systems’, Celest. Mech, in print

    Google Scholar 

  • Deprit, A.:1969, ‘Canonical transformations depending on a small parameter’, Celest. Mech. 1, pp. 12–30

    Google Scholar 

  • Duncan, M., Quinn, T., Tremaine, S.: 1989, iThe long-term evolution of orbits in the solar system: A mapping approach’, Icarus 82, pp. 402–418

    Article  ADS  Google Scholar 

  • Ferraz-Mello S.: 1993, ‘Kirkwood gaps and resonant groups’, in Asteroids, Comets, Meteors, IAU Symp. No. 160, pp. 175–188 (eds. Milani, Di Martino, Cellino), Kluwer Academic Publishers, Dordrecht, Boston, London

    Google Scholar 

  • Ferraz-Mello, S.: 1994, ‘The convergence domain of the Laplacian expansion of the disturbing function’, Celest. Mech. Dyn. Astron. 58, pp.37–52

    Article  MathSciNet  ADS  Google Scholar 

  • Froeschlé, C.L., Petit, J. M.: 1990, ‘Polynomial approximation of Poincaré maps for Hamiltonian systems’, Astron. Astrophys. 238, pp. 413–423

    ADS  MATH  Google Scholar 

  • Hadjidemetriou, J. D.: 1991, ‘Mapping models for Hamiltonian systems with application to resonant asteroid motion’, in Predictability, Stability and Chaos in N-body Dynamical Systems, ed. A. Roy, pp. 157–175, Plenum Press, New York, London

    Chapter  Google Scholar 

  • Hadjidemetriou, J. D.: 1992, ‘The elliptic restricted problem at the 3:1 resonance’, Celest. Mech Dyn. Astron. 53, pp. 151–183

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hadjidemetriou, J. D.: 1993, ‘Asteroid motion near the 3:1 resonance’, Celest. Mech. 56, pp. 563–599

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Henrard, J.: 1997,’ symplectic integrators’, to be published in Analysis and modelling the discrete dynamical systems—with application to dynamical astronomy, eds. D. Benest and C. Froeschlé, Gordon and Breach Henrard, J., Caranicolas, D.: 1990, ‘Motion near the 3:1 resonance of the planar elliptic restricted three body problem’, Celest. Mech. 47, pp. 99–121

    Google Scholar 

  • Henrard, J., Lemaître, A.: 1987, ‘A perturbative treatment of the 2/1 Jovian resonance’, Icarus 69, pp. 266–279

    Article  ADS  Google Scholar 

  • Kinoshita, H., Yoshida, H., Nakai, H.: 1991, ‘Symplectic integrators and their application to dynamical astronomy’, Celest. Mech. 50, pp. 59–71

    Article  ADS  MATH  Google Scholar 

  • Laskar J., Froeschlé, Cl., Celleti, A., ‘Numerical analysis of the fundamental frequencies. Application to standard mapping’, Physica 56D, pp. 253–269

    Google Scholar 

  • Lemaître, A., Henrard, J.: 1988, ‘The 3/2 resonance’, Celest. Mech. 43, pp.91–98

    ADS  Google Scholar 

  • Lichtenberg, A. J., Lieberman, M. A.: 1983, Regular and stochastic motion, Springer-Verlag, New York, Heidelberg, London

    Book  MATH  Google Scholar 

  • Liu, J., Sun, Y. S.: 1994, ‘Chaotic motion of comets in near-parabolic orbit: mapping approaches’, Celest. Mech. 60, pp. 3–28

    Article  ADS  MATH  Google Scholar 

  • Malhotra, R.: 1994, ‘A mapping method for the gravitational few-body problem with dissipation’, Celest. Mech. 60, pp. 373–385

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Murray, C. D.: 1986, ‘Structure of the 2:1 and 3:2 Jovian resonances’, Icarus 65, pp. 70–82

    Article  ADS  Google Scholar 

  • Murray, C. D., Fox, K.: 1984, ‘Structure of the 3:1 Jovian resonance: A comparison of numerical methods’, Icarus 59, pp. 231–233

    Article  ADS  Google Scholar 

  • Neri, F.: 1988, ‘Lie algebras and canonical integration’, Preprint of Department of Physics, University of Meryland

    Google Scholar 

  • Petit, J. M., Froeschlé, Cl.: 1994, ‘Polynomial approximations of Poincaré maps for Hamiltonian systems. II’, Astron. Astrophys. 282, pp. 291–303

    ADS  Google Scholar 

  • Petrosky T. Y., Broucke, R.: 1988, ‘Area-preserving mappings and deterministic chaos for nearly parabolic motions’, Celest. Mech. 42, pp. 53–79

    MathSciNet  ADS  Google Scholar 

  • Scholl, H., Froeschlé, Cl.: 1974, ‘Asteroidal motion at the 3/1 commensurability’, Astron. Astrophys. 33, pp. 455–458

    ADS  Google Scholar 

  • Scholl, H., Froeschlé, Cl.: 1975, ‘Asteroidal motion at the 5/2, 7/3 and 2/1 resonances’, Astron. Astrophys. 42, pp. 457–463 Sidlichovsky, M.: 1987, ‘Comparison of perturbation and Wisdom methods for 5/2 resonance’, In Proceedings 10th ERAM 3.-Dynamics and the solar system, ed. M. Šidlichovský, Praha, pp. 571-580

    Google Scholar 

  • Šidlichovský, M.: 1992, ‘Mapping for the asteroidal resonances’, Astron. Astrophys. 259 pp. 341–348

    ADS  Google Scholar 

  • Šidlichovský, M.: 1993, ‘Chaotic behaviour of trajectories for asteroidal resonances’, Celest. Mech. 56, pp. 143–152

    Article  ADS  MATH  Google Scholar 

  • Šidlichovský, M., Melendo, B.: 1986, ‘Mapping for 5/2 asteroidal commensurability’, Bull. Astron. Inst. Csechosl. 37, pp. 65–80

    ADS  MATH  Google Scholar 

  • Siegel L. S., Moser G.: 1971, Lectures on celestial mechanics, Springer-Verlag, Berlin, Heidelberg, New York, Berlin

    Book  MATH  Google Scholar 

  • Sussman, G. J., Wisdom J.: 1988, Science 241, pp. 433–437

    Article  ADS  Google Scholar 

  • Varadarayan V. S., 1974, Lie groups, Lie algebras and their representations, Prentice-Hall, Engelwood Cliffs

    Google Scholar 

  • Wisdom, J.: 1982, ‘The origin of the Kirkwood gaps’, Astron. J. 87, pp.577–593

    Article  MathSciNet  ADS  Google Scholar 

  • Wisdom, J.: 1983, ‘Chaotic behaviour and origin of the 3/1 Kirkwood gap, Icarus 56, pp.51–74

    Article  ADS  Google Scholar 

  • Wisdom, J.: 1985, ‘A perturbative treatment of motion near the 3/1 commensurability’, Icarus 63, pp.272–289

    Article  ADS  Google Scholar 

  • Wisdom, J.: 1992, ‘Long term evolution of the solar system’, in Chaos, Resonance and Collective Dynamical Phenomena in the solar system, IAU Symp. No. 152, pp. 17–24 (ed. S. Ferraz-Mello), Kluwer Academic Publishers, Dordrecht, Boston, London

    Google Scholar 

  • Wisdom, J., Holman, M.: 1991, ‘Symplectic maps for the N-body problem’, Astron. J. 1991, pp. 1528–1538

    Google Scholar 

  • Yokoyama, T., Balthazar, J. M.: 1992, ‘Application of Wisdom’s perturbative method for 5/2 and 7/3 resonances’, Icarus 99, pp. 175–190

    Article  ADS  Google Scholar 

  • Yoshida, H.: 1990, ‘Construction of higher order symplectic integrators’, Physics Letters A 150, pp. 262–268

    Article  MathSciNet  ADS  Google Scholar 

  • Yoshida, H.: 1993, ‘Recent progress in the theory and application of symplectic integrator’, Celest. Mech. 27, pp. 27–43

    Article  ADS  Google Scholar 

  • Zhou, J. L., Fu, Y. N., Sun, Y. S.: 1994, ‘Mapping model for near-conservative system with applications’, Celest. Mech. 60, pp. 471–487

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Šidlichovský, M. (1997). Mapping and Dynamical Systems. In: Dvorak, R., Henrard, J. (eds) The Dynamical Behaviour of our Planetary System. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5510-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5510-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6320-3

  • Online ISBN: 978-94-011-5510-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics