Skip to main content

Size Effects in Electrochemical Systems

  • Chapter
  • 250 Accesses

Abstract

In the structure of solids (especially metals) particularly interesting are the particles usually consisting of from some tens to some tens of thousands of atoms. They have been called metallic clusters [1]. Ultrathin electrochemical microelectrodes of the thickness between ~1 nm to some tens of nm’s also belong to this region; they are treated as highly dispersed state of matter. This region constitutes a kind of „bridge” between the microscopic region of matter (atoms, giant molecules) on the one hand and the macroscopic one (condensed matter, bulk of metallic crystals) on the other.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wertheim, G. H.: Electronic structure of metal clusters, Z. Phys. D12 (1989), 319–326.

    Google Scholar 

  2. Romanowski, S.: Size effects in metallic clusters and thin films — some important applications of the analytical cluster and film models — Review Article, Polish J. Chem. 67 (1993), 1709–1731.

    CAS  Google Scholar 

  3. Müller, H., Opitz, Ch. and Skala, L.: The highly dispersed metal state — physical and chemical properties — Review Article, J. Mol. Catal. 54 (1989), 389–405.

    Article  Google Scholar 

  4. Kubo, R., Kawabata, A. and Kobayashi, S.: Electronic properties of small particles, Ann. Rev. Mat Sci. 14 (1984), 49–66.

    Article  CAS  Google Scholar 

  5. Casula, F., Andreoni, W. and Maschke, K.: Size effects on the electron energy spectra of aluminum clusters, J. Phys. C19 (1986), 5155–5166.

    Google Scholar 

  6. Wertheim, G. K. and Di Cenzo, S. B.: Cluster growth and core—electron binding energies in supported metal clusters, Phys. Rev. B37 (1988), 844–847.

    Google Scholar 

  7. Rohlfing, E. A., Cox, D. M. and Kaldor, A.: Photoionization measurements on isolated iron-atom clusters, Chem. Phys. Lett. 99 (1983), 161–166.

    Article  CAS  Google Scholar 

  8. Powers, D., Hansen, S. G., Gensic, M. E., Michalopolous, D. L. and Smalley, R. E.: Supersonic copper clusters, J. Chem. Phys. 78 (1983), 2866–2881.

    Article  CAS  Google Scholar 

  9. Rogers III, J. P., Cutler, H. P., Feuchtwang, T. E., Miskovsky, N. and Lucas, A. A.: Influence of the boundary conditions on the Fermi energy and density of states in a free—electron solid of sub-micron dimension, Surf. Sci 141 (1984), 61–81.

    Article  CAS  Google Scholar 

  10. Brechignac, C. and Cahuzac, Ph.: Evolution of photoionization spectra of metal clusters as a function of size, Z. Phys. D3 (1986), 121–129.

    Google Scholar 

  11. Bilek, O. and Skala, L.: From finite to infinite crystals: Analytic solution of simple tight binding model of finite sc, fee and bcc crystals of arbitrary size, Czech. J. Phys. B23 (1979), 1003–1019.

    Google Scholar 

  12. Künne, L. Skala, L. and Bilek, O.: From finite to infinite crystals: Some electronic properties of BCC clusters, Czech. J. Phys. B29 (1979), 1030–1039.

    Article  Google Scholar 

  13. Kadura, P. and Künne, L.: From small to infinite F.C.C. clusters, Phys. stat. sol (b) 88 (1978), 537–544.

    Article  CAS  Google Scholar 

  14. Ekardt, W.: Work function of small metal particles: self—consistent spherical jellium—background model, Phys. Rev. B29 (1984), 1558–1564.

    Google Scholar 

  15. de Heer, W. A., Knight, W. D., Chou, M.Y. Y. and Cohen, M. L.: Electronic shell structure and metal clusters, Solid State Phys. 40 (1987), 93–181.

    Article  Google Scholar 

  16. Müller, H. and Skala, L.: Interpolation formulae for describing size dependence of properties of clusters and finitesystems, Z. Kristall. 196 (1991), 93–104.

    Article  Google Scholar 

  17. Romanowski, S.: Some theoretical aspects of ionic chemisorption and electron work function on charged (100), (110) and (111) surfaces of Ag and Au monocrystals studied by means of extended coherent potential approximation, Polish J. Chem. 67 (1993), 729–743.

    CAS  Google Scholar 

  18. Skala, L. and Pancoska, P.: Interpolation formula for physical properties of polypeptides as a function of the number of aminoacids residues, Chem. Phys. 125 (1988), 21–30.

    Article  CAS  Google Scholar 

  19. Bour, P.: Circular dichroism study of the conformation of polypeptides and their complexes with porphyrin pigments, Ph. D. Thesis, Charles University, Prague, 1989.

    Google Scholar 

  20. Kenkre, V. M. and Reineker, P.: Exciton dynamics in molecular crystals and aggregates, Springer—Verlag, Berlin, 1983.

    Google Scholar 

  21. Müller, H., Fritsche, H.—G. and Skala, L.: Analytic cluster models and interpolation formulae for cluster properties, in H. Haberland (ed.), Cluster of Atoms and Molecules, Springer Series in Chemical Physics, vol. 52, Springer—Verlag, 1994, pp. 115–139.

    Google Scholar 

  22. Wronka, A.: Size effects in gases chemisorption on metals, Ph. Thesis, University of Łódź, Łódź, 1995.

    Google Scholar 

  23. Szczeniowski, S. and Wojtczak, L.: The Stoner theory of ferromagnetic thin films, Acta Phys. Polon. 36 (1969), 241–253.

    CAS  Google Scholar 

  24. Wojtczak, L.: Certain properties of thin film electrons, Acta Phys. Polon. 36 (1969), 107–115.

    Google Scholar 

  25. Perdew, J. P.: Energetics of charged metallic particles: from atom to bulk solid, Phys. Rev. B37 (1988), 6175–6180.

    Google Scholar 

  26. Hölzl, J. and Schulte, F. K.: Work function of metals, in Springer Tracts in Modern Physics, Solid Surface Physics, vol. 85, Springer—Verlag, Berlin, 1979, pp. 1–150.

    Google Scholar 

  27. Handbook of Chemistry and Physics, 59th Edition, R. C. Weast (ed.), Plackwell Sci. Publ. Ltd., Oxford, 1978.

    Google Scholar 

  28. Schumacher, E., Kappes, M., Marti, K., Radi, P., Schär, M. and Schmidhalter, B.: Metal—clusters: preparation, properties, theory, Ber. Bunsenges. Phys. Chem. 88 (1984), 220–228.

    Article  CAS  Google Scholar 

  29. Knight, W. D., de Heer, W. A. and Saunders, W. A.: Shell structure and response properties of metal clusters, Z. Phys. D3 (1986), 109–114.

    Google Scholar 

  30. Müller, H. Opitz, Ch. and Romanowski, S.: Zur Parameterfrage bei semiempirischer Behandlung von Metall-Clustern (in German) Z. Phys. Chem. (Leipzig) 270 (1989), 33–41.

    Google Scholar 

  31. Kulkarni, G. V. and Rangarajan, S. K.: Electrochemisorption —A cluster approach, J. Electroanal Chem, 196 (1985), 375–385.

    Article  CAS  Google Scholar 

  32. Skala, L.: (a) The CNDO/BW study of lithium clusters, Phys. stat. sol. (b) 107 (1981), 351–357; (b) The CNDO/BW study of lithium clusters. II. BCC clusters, Phys. stat. sol. (b) 109 (1982), 733-741; (c) The CNDO/BW study of lithium dusters. III. Different crystallographic structures, Phys. stat. sol. (b) 110 (1982), 299-306.

    Article  CAS  Google Scholar 

  33. Romanowski, S., Pietrzak, T. M., Baldomir, D. and Rivas, J.: Size effect of the oxygen and hydrogen chemisorption binding energy in heterogeneous 3d—metal clusters, Phys. stat. sol (b), 187 (1995), K9–K11.

    Article  CAS  Google Scholar 

  34. Salahub, D. R.: Transition — Metal atoms and dimers, Adv. Chem. Phys. 69 (1987), 447–520.

    Article  CAS  Google Scholar 

  35. Nepijko, S. A., Pippel, E. and Woltersdorf, I.: Dependence of lattice parameter on particle size, Phys. stat. sol (a) 61 (1980), 469–475.

    Article  CAS  Google Scholar 

  36. Balerna, A., Bernieri, E., Picozzi, E., Reale, A., Santucci, S., Buratini, E. and Mobilio, S.: A structural investigations on small gold clusters by EXAFS, Surf. Sci. 156 (1985), 206–213.

    Article  CAS  Google Scholar 

  37. Pavlov, P.: Relation between melting point and surface energy, Z. phys. Chem. (Leipzig) 65 (1909), 545–548.

    Google Scholar 

  38. Buffat, Ph. and Borei, J. P.: Size effect on the melting temperature of gold particles, Phys. Rev. A13 (1976), 2287–2298.

    Google Scholar 

  39. Ladas, S.: The effect of metal particle size on the accessibility of surface atoms to an impinging gas, Surf. Sci. 159 (1985), L406–L410.

    Article  CAS  Google Scholar 

  40. Gillet, E., Channakhone, S., Matolin, V. and Gillet, M.: Chemisorptional behaviour of Pd small supported particles depending on the structure: TDS, SSIMS and TEM investigations, Surf Sci. 151/153 (1985), 603–614.

    Article  Google Scholar 

  41. Mie, G.: Contributions to the optics of turbid media, especially colloidal metal solutions, Ann. Phys. (Leipzig) 25 (1908), 377–445.

    CAS  Google Scholar 

  42. Bennemann, K. H. and Reindl, S.: Optical properties of small metallic particles, Ber. Bunsenges. Phys. Chem. 88 (1984), 278–284.

    Article  CAS  Google Scholar 

  43. Abou—Saif, E. A., Mohamed, A. A. and El—Khodary, M. G: Correlation of the structure with electrical and optical properties of thin films, Thin Solid Films 94 (1982), 133–142.

    Article  Google Scholar 

  44. Müller, H., Opitz, Ch., Romanowski, S. and Skala, L.: On the size dependence of the contact potential and its consequences, Phys. stat. sol. (b) 148 (1988), K11–K15.

    Article  Google Scholar 

  45. Müller, H. and Opitz, Ch.: Calculation of the properties of metal clusters, for example ionization energies, Z. Phys. Chem. (N.F.) 169 (1990), 51–61.

    Article  Google Scholar 

  46. Loh, S. K., Lian, L. and Armentront, J.: Collision—induced dissociation of nobium cluster ions: Transition metal cluster binding energies, J. Am. Chem. Soc. 111 (1989), 3167–3176.

    Article  CAS  Google Scholar 

  47. Brechignac, C., Cahuzac, Ph., Carlier, F., de Frutos, M. and Leygnier, J.: Alkali-metal clusters as prototypes of metal clusters, J. Chem. Soc. Faraday Trans. 86 (1990), 2525–2531.

    Article  CAS  Google Scholar 

  48. Eschring, H. and Bergert, I.: An optimized LCAO version for band structure calculations — application to copper, Phys. stat. sol (b) 90 (1978), 621–628.

    Article  Google Scholar 

  49. Reichert, B. and Jung, H.: (a) Electronic structure of the charged copper (001)/ vacuum interface, Phys. stat. sol (b) 158 (1990), K119–K122; (b) LCAO calculations of the valence band structure of modified polar semiconductor surfaces, Phys. stat. sol. (b) 165 (1991), 119-128.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Romanowski, S., Wojtczak, L. (1997). Size Effects in Electrochemical Systems. In: Green Functions in Electrochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5504-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5504-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6317-3

  • Online ISBN: 978-94-011-5504-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics