Skip to main content

Abstract

The idea of the thermodynamic Green Functions (GF, GF’s) was originally introduced in statistical physics in order to describe the response of a considered system with respect to an external perturbation. The GF’s allow us to calculate the average values of observables in a direct way, equivalent to the average values obtained by means of the statistical operator procedure without, however, the need to know the explicit form for the statistical operator. The thermodynamic GF technique widely used in solid state physics has been confirmed by successful results in this area. At present, the GF method is applied to electrochemical problems for which it seems to be an equally satisfactory and convenient tool for investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zubarev, D. N.: Two—dimensional Green Functions in statistical physics (in Russian), Usp. Fiz. Nauk 3 (1960), 320–362.

    Google Scholar 

  2. Bonch—Bruevich, V. L. and Tyablikov, S. V.: The Green Function method in statistical mechanics, North-Holland, Amsterdam, 1962.

    Google Scholar 

  3. Tahir—Khelli, R. A. and der Haar, D.: (a) Use of Green Functions in the theory of ferromagnetism. I. General discussion of the spin—S case, Phys. Rev. 127 (1962), 88–94; (b) Use of the Green Functions in the theory of ferromagnetism. II. Dyson spin waves, Phys. Rev. 127 (1962), 95-100.

    Article  Google Scholar 

  4. Economou, E. N.: Green’s Functions in quantum physics, Springer Verlag in Solid State Science 7, Springer-Verlag, Berlin, Heidelberg, N.Y, 1979.

    Google Scholar 

  5. Davison, S. G. and Stęślicka, M.: Basic theory of surface states, Clarendon Press, Oxford, 1992.

    Google Scholar 

  6. Kubo, R.: Stochastic theory of resonance absorption, J. Phys. Soc. Japan 9 (1954), 935–944.

    Article  CAS  Google Scholar 

  7. Huang, K.: Statistical mechanics, John Wieley and Sons, N.Y., 1963.

    Google Scholar 

  8. Kittel, C.: Quantum theory of solids, John Willey and Sons, N.Y., 1981.

    Google Scholar 

  9. Bogolyubov, N.N. and Parasyuk, A. S.: On some analytic properties of generalized functions (in Russian), Dokl. Akad. Nauk. SSSR 109 (1956), 717–719.

    Google Scholar 

  10. Romanowski, S., Stasiak, W. and Wojtczak, L.: Theoretical description of the interface: electrode-electrolyte solution, Electrochim. Acta 27 (1982), 511–520.

    Article  CAS  Google Scholar 

  11. Parent, L. G., Ueba, H. and Davison, S. G.: Electronic properties of an ordered—disordered interface, Phys. Rev. B26 (1982), 753–768.

    Google Scholar 

  12. Valenta, L. and Wojtczak, L.: Surface effects in metallic ferromagnetic films, Czech. J. Phys. B30 (1980), 1025–1038.

    Article  Google Scholar 

  13. Bell, B. and Madhukar, A.: Theory of chemisorption on metallic surfaces: Role of intra-adsorbate Coulomb correlation and surface structure, Phys. Rev. B14 (1976), 4281–4294.

    Google Scholar 

  14. Młynarski, P.: The nature of specific adsorption of some halogen ions on mercury electrode. Quantum chemical approach, Electrochim. Acta 32 (1987), 1693–1702.

    Google Scholar 

  15. Garcia—Moliner, F. and Rubio, J.: A new methods in the quantum theory of surface states, J. Phys. C2 (1969), 1789–1801.

    Google Scholar 

  16. Garcia—Moliner, F.: The physics of surface Green Function matching, Ann. Phys. 2 (1977), 179–200.

    Google Scholar 

  17. Nepijko, S. A., Pippel E. and Woltersdorf, I.: Dependence of lattice parameter on particle size, Phys. stat. sol. (a) 61 (1980), 469–475.

    Article  CAS  Google Scholar 

  18. Parent, L.G., Davison, S. G. and Ueba, H.: Electronic theory of molten salts, J. Electroanal Chem. 113 (1980), 51–62.

    Article  CAS  Google Scholar 

  19. Valenta, L.: (1996) Theory of melting, Czech. J. Phys. 46, 607–619.

    Article  CAS  Google Scholar 

  20. Valenta, L.: Quantum mechanical background, in S. Krupička and J. Šternberk (eds.), Elements of Theoretical Magnetism, Academia, Publishing Hause of the Czechoslovak Academy of Sciences, Prague, 1968, pp. 1–34.

    Google Scholar 

  21. Millie, P. and Brenner, V.: Electrostatic interactions and hydrogen bonds in clusters. Theoretical approach, J. Chim. Phys. 92 (1995), 428–444.

    CAS  Google Scholar 

  22. Jortner, J.: Level structure and dynamics of clusters, Ber. Bunsenges. Phys. Chem. 88 (1984), 188–201.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Romanowski, S., Wojtczak, L. (1997). Green Functions Theory. In: Green Functions in Electrochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5504-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5504-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6317-3

  • Online ISBN: 978-94-011-5504-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics