Skip to main content

Part of the book series: NATO ASI Series ((ASHT,volume 36))

  • 349 Accesses

Abstract

This paper describes some of our contributions in the nonlinear optics in semiconductors: the accurate description of the light self-diffraction on the highly modulated dynamic gratings (particularly, in c-Si); the comparison of the third-order susceptibility values of semiconductors obtained by measurements in self-diffraction and phase conjugation with those produced by the theoretical models; the se?f-diffraction on anharmonic phase gratings generated in photorefractive materials (particularly, in sillenites) and an all-optical method for the measurement of the electro-optical coefficient using the laser light self-diffraction in the photorefractive materials; the holographic interferometry based on phase conjugation in sillenites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peyghamberian N. and Koch S.W. (1990), Semiconductor Nonlinear Materials, in Nonlinear Photonics, Ed. Gibbs H.M. et al. Springer Verlag. Berlin, 7–

    Google Scholar 

  2. Woerdman J. P. (1971). Some optical and electrical properties of a laser-generated free-carrier plasma in Si, Philips Res. Rep. Supp., No. 7.

    Google Scholar 

  3. Eichler H. J., Gunther P., Pohl D. W. (1986). Laser Induced Dynamic Gratings. Springer Verlag, Berlin

    Google Scholar 

  4. Eichler H. J.. Massman F. (1982)-Diffraction efficiency and decay times of free-carrier gratings in silicon, J. Appl. Phys., 53, No. 4. pp. 3237–3242.

    Article  ADS  Google Scholar 

  5. Eichler II. J. et al.(1987), Laser-induced free-carrier and temperature gratings in silicon. Phys. Rev. B. 36. No. 6. 3247–3253

    Article  ADS  Google Scholar 

  6. Born M., Wolf E (1966). Principles of Optics, Pergamon Press, Oxford.

    Google Scholar 

  7. Berry M. V. (1986). The Diffraction of Light by Ultrasound, Academic Press. N.Y.

    Google Scholar 

  8. Petris A.. Mad Y.I.. Voicu L. and Negres R., (1994), Accurate description of the light self-diffraction on high-modulated dynamic gratings in semiconductor materials, Proc. SPIE, 2108, 251–255.

    Google Scholar 

  9. Vlad V. I., Petris A.. Tibuleae S. (1991)-Self-diffraction studies on Si-samples, Rev. Roum. Phys., Vol. 36. (5-6). 345–350.

    Google Scholar 

  10. Sheik-Bahae M., Said A.A., Wei T.H., Hagan D.J., Van Stryland E.W., (1990), Sensitive measurement of optical nonlinearities using a single beam. IEEE J.Quantum Electronics, 26, 760–769.

    Article  ADS  Google Scholar 

  11. Stepanov S. I.. Petrov M. P., (1988), Photorefractive materials and Their Applications, Vol. 1, Gunter P. and Huignard J.-P.,(1985). Eds, Springer-Yerlag, Series ”Topics in Applied Physics”, Vol. 61.

    Google Scholar 

  12. Moharam M. G., Gaylord T. K., Magnusson R. and Young L., (1979), Holographic Gratings Formation in Photorefractive Crystals with Arbitrary Electron Transport Length. J. Appl. Phys., Vol.50, 5642–5651.

    Article  ADS  Google Scholar 

  13. Petrov M. P., Miridonov S. V., Stepanov S. I. and Kulikov V. V., (1979), Light Diffraction and Nonlinear Image Processing in Electrooptic Bi12SiO20 Crystals. Optics Communications, Vol. 31, 301–30

    Article  ADS  Google Scholar 

  14. Vachss F., Hesselnik L.,(1988), Nonlinear Photorefractive Response at High Modulation Depths, J. Opt. Soc. Am., A. Vol. 5. no. 5. 690–701.

    Article  ADS  Google Scholar 

  15. Au L. B., Solymar L., (1990). Higher Harmonic Gratings in Photorefractive materials at Large Modulation with Moving Fringes, J. Opt. Soc. Am. A. Vol. 7(8). 1554–1561.

    Article  ADS  Google Scholar 

  16. Vlad. V. I., Petris A. and Apostol I., (1994), Self-diffraction on high-modulated phase gratings induced in photorefractive crystals, Rom. Rep. Phys., 46(7-8). 589–596.

    Google Scholar 

  17. Petris.A. Vlad V.I. and Apostol I.. (1994). Determination of the electro-optic coefficient of BTO photorefractive crystal using the laser light self-diffraction, Proc. SPIE. 2108, 280–284.

    Google Scholar 

  18. Enns R.H. and Rangnekar S.S., (1974), Diffraction by a laser-induced thermal phase grating. Parts I and II, Canadian J. Physics. 52, 99–109 and 562-567.

    ADS  Google Scholar 

  19. Bayvel P., McCall M. and Wright R.V., (1988), Continuous method for measuring the electro-optic coefficient in BSO and BGO, Opt. Lett. 13 27–29.

    Article  ADS  Google Scholar 

  20. Yeh P., (1993). Introduction of photorefractive nonlinear optics, J.Wiley. N.Y.

    Google Scholar 

  21. Huignard J. P. and Herriau J. P. 1977 Real-time double exposure interferometry with BSO crystals in transverse electrooptic configuration Appl. Optics 167. 1807–1809

    Google Scholar 

  22. Marrakchi A.. J. P. Huignard and J. P. Herriau. (1980), Application of phase conjugation in BSO crystals to mode pattern visualization in diffuse vibrating structures, Opt. Commun. 34(1), 15–18.

    Article  ADS  Google Scholar 

  23. Kamshilin A. A and Mokrushina, E. V., (1984), Photorefractive crystals for real-time holographic interferometry. Proc. SPIE 473, 83–86.

    Article  Google Scholar 

  24. Kamshilin A. A. Mokrushina E. V. and Petrov M. P., (1989), Adaptive holographic interferometers operating through self-diffraction of recording beams in photorefractive crystals. Opt. Eng. 28(6), 580–585.

    Article  Google Scholar 

  25. Vlad V. I. Popa D. Petrov M.P. and Kamshilin A.A. 1990 Optical testing by dynamic holographic interferometry with photorefractive crystals and computer image processing Proc. SPIE 1332 pt. 1 236–245

    Google Scholar 

  26. Vlad V. I. and Malacara, D., (1994), Direct spatial reconstruction of optical phase from phase-modulated images, in Progress in Optics. Wolf E., Editor, Vol.XXXIII, 261–317.

    Google Scholar 

  27. Vlad V.I., Malacara D. and A. Petris. (1996). Real-time holographic interferometry using optical phase conjugation in photorefractive materials and direct spatial phase reconstruction. Opt. Eng., 35, 1383–1388.

    Article  ADS  Google Scholar 

  28. Petris.A. Tibuleae S. and Voicu L., (1993). Measuring the phase conjugation fidelity by computer image analysis, Roum. J. Phys., 38. 633–635 and 669-673.

    Google Scholar 

  29. Vlad V.I. and Petris A., (1994), Fidelity evaluation of the phase conjugation in photorefractive crystal ussing the spatial heterodyne demodulation of optical interferograms in the Digest of ICO Topical Meeting “Frontiers in Information Optics”. Kyoto, Japan.

    Google Scholar 

  30. Jain R.K., Klein M.B., (1979), Degenerate four-wave mixing near llie band gap of semiconductors, Appl. Phys. Lett., 35, 454–456.

    Article  ADS  Google Scholar 

  31. Moharam M. G., Gaylord T. K., Magnusson R. (1980)-Criteria for Bragg regime diffraction by phase gratings. Opt. Comm., Vol. 32, No. 1, pp. 14–18 and pp. 19-23.

    Article  ADS  Google Scholar 

  32. Malacara D., (1992), Ed., Optical Shop Testing. 2nd. Edition, John Wiley and Sons, New York.

    Google Scholar 

  33. Robinson D. W. and Reid G. T.,(1993), Eds., Interferogram analysis. Institute of Physics Publ., Bristol.

    Google Scholar 

  34. Ichioka Y. and Inuiya M., (1972), Direct phase detecting system, Appl. Opt. 11, 1507–1514.

    Article  ADS  Google Scholar 

  35. Doerband B., Wiedman W., Wegmann U., Kuechel W. and Freischland K. R., (1990)., Software concept for the new Zeiss interferometer, Proc. SPIE 1332. 664–672.

    Article  ADS  Google Scholar 

  36. Takeda M. and Tung Z., (1985), Subfringe holographic interferometry by computer-based spatial-carrier fringe-pattern analysis. J.Opt. (Paris), 16, 127–131.

    Article  ADS  Google Scholar 

  37. Takeda M., (1989). Spatial carrier heterodyne techniques for precision interferometry and profilometry: An overview, Proc. SPIE 1121, 73–88.

    Article  ADS  Google Scholar 

  38. Creath K., (1988), Phase measurement interferometry techniques. in Progress in Optics. Vol. XXVI. Wolf E., Ed., Elsevier Sci. Publ., Amsterdam, 349–393.

    Google Scholar 

  39. Georges M.P. and Lemaire Ph.C., (1995), Phase-shifting real-time holographic interferometry that uses BSO crystals, Appl. Opt., 34. 7497–7506.

    Article  ADS  Google Scholar 

  40. Malacara D., Vlad V. I. and Servin M., (1994), Spatial carrier analysis of interferograms with aspheric wavefronts, Proc. SPIE 2340, 190–201.

    Google Scholar 

  41. Servin M. Malacara D., Malacara Z. and Vlad V. I., (1994). Sub-Nyquist null aspheric testing using a computer stored compensator, Appl. Opt. 33 (19). 4103–4108.

    Article  ADS  Google Scholar 

  42. Vlad V. I. and Malacara D., (1995). Spatial phase demodulation in fringe images. Proc. SPIE 2461, 234–244.

    Article  ADS  Google Scholar 

  43. Vlad V.I., Petris A, Chumash V. and Cojoearu I., (1996). Laser induced periodic structures in porous silicon. Appl Surface Science (accepted for publication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vlad, V.I., Petris, A. (1997). Contributions to Self-Diffraction and Optical Phase Conjugation in Semiconductors. In: Andriesh, A., Bertolotti, M. (eds) Physics and Applications of Non-Crystalline Semiconductors in Optoelectronics. NATO ASI Series, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5496-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5496-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6313-5

  • Online ISBN: 978-94-011-5496-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics