Skip to main content

Biomolecular Structure and Dynamics: Recent Experimental and Theoretical Advances

  • Chapter
Biomolecular Structure and Dynamics

Part of the book series: NATO ASI Series ((NSSE,volume 342))

  • 224 Accesses

Abstract

In the last decade NMR spectroscopy has become an important alternative to X-ray crystallography. The principal advantage of NMR is that it allows the study of biomolecules in solution, thus closer to their real physiological environment. The method is limited, however, to biomolecules of relatively small size due to limitations in spectral resolution and line broadening effects. The upper limit is presently situated around molecular weights of 30 kD. Knowledge of three-dimensional structures might lead, for example, to a better understanding of structure-function relationships or recognition processes. For this purpose, accurate structures are required and, as we shall see, the use of so-called relaxation matrix approaches provides a means to improve the accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vuister, G.W., Boelens, R. (1987). Three-dimensional J-resolved NMR spectroscopy. J. Magn. Reson. 73, 328–333.

    Google Scholar 

  2. Oschkinat, H., Griesinger, C., Kraulis, P.J., Sørensen, O.W., Ernst, R.R., Gronenborn, A.M., Clore, G.M. (1988). Three-dimensional NMR spectroscopy of a protein in solution. Nature 332, 374–376.

    Article  ADS  Google Scholar 

  3. Griesinger, C., Sørensen, O.W., Ernst, R.R. (1989). Three-dimensional Fourier spectroscopy. Application to high-resolution NMR. J. Magn. Reson. 84, 14–63.

    Google Scholar 

  4. Kay, L.E., Marion, D., Bax, A. (1989). Practical aspects of 3D heteronuclear NMR of proteins. J. Magn. Reson. 84, 72–84.

    Google Scholar 

  5. Fesik, S.W., Zuiderweg, E.R.P. (1990). Heteronuclear three-dimensional NMR spectra of isotopically labelled biological macromolecules. Q. Rev. of Biophys. 23, 97–131.

    Article  Google Scholar 

  6. Boelens, R., Vuister, G.W., Padilla, A., Kleywegt, G.J., de Waard, P., Koning, T.M.G., Kaptein, R. (1990). Three-dimensional NMR spectroscopy of biomolecules. In: Structure & Methods, Volume 2: DNA Protein Complexes & Proteins, Adenine Press, 63–81.

    Google Scholar 

  7. Clore, G.M., Gronenborn, A.M. (1991a). Application of three-and four-dimensional heteronuclear NMR spectroscopy to protein structure determination. Prog. N.M.R. Spectr. 23, 43–92.

    Article  Google Scholar 

  8. Bax, A., Grzesiek, C. (1993). Methodological advances in protein NMR. Acc. Chem. Res. 26,131–138.

    Article  Google Scholar 

  9. Noggle, J.H., Schirmer, R.E. (1971). The nuclear Overhauser effect-chemical applications, Academic, New York.

    Google Scholar 

  10. Neuhaus, D., Williamson, M. (1989). The nuclear Overhauser effect in structural and conformational analysis. VHC Publisher, New York.

    Google Scholar 

  11. Crippen, G.M., Havel, T.F. (1978). Stable calculation of coordinates from distance information. Acta Crystallogr. A34, 282–284.

    ADS  Google Scholar 

  12. Havel, T.F., Kuntz, I.D., Crippen, G.M. (1983). The theory and practice of distance geometry. Bull. Math. Biol. 45, 665–720.

    MathSciNet  MATH  Google Scholar 

  13. Havel, T.F., Wüthrich, K. (1984). A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurement of intramolecular 1H-1H proximities in solution. Bull. Math. Biol. 46,673–698.

    MATH  Google Scholar 

  14. Braun, W., Go, N. (1985). Calculation of protein conformations by proton-proton distance constraints. A new efficient algorithm. J. Mol. Biol. 186, 611–626.

    Article  Google Scholar 

  15. Clore, G.M., Brünger, A.T., Karplus, M., Gronenbom, A.M. (1986a). Application of molecular dynamics with interproton distance restraints to three-dimensional protein structure determination: a model study of crambin. J. Mol. Biol. 191, 523–551.

    Article  Google Scholar 

  16. Nilges, M., Clore, G.M., Gronenborn, A.M. (1988). Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. F.E.B.S. Lett. 229, 317–324.

    Article  Google Scholar 

  17. Scheek, R.M., van Gunsteren, W.F., Kaptein, R. (1989) Molecular Dynamics techniques for determination of molecular structures from Nuclear Magnetic Resonance data. In: Oppenheimer NJ, James TL (eds) Nuclear Magnetic Resonance, Methods in enzymology. Vol. 177. Academic, New York, 204–218.

    Google Scholar 

  18. Van Gunsteren, W.F., Kaptein, R., Zuiderweg, E.R.P. (1983). Use of Molecular Dynamics computer simulations when determining protein structure by 2D-NMR. In: Olson, W.K. ed. Nucleic acid conformation and dynamics, report of the NATO/CECAM workshop, Orsay, 79–92.

    Google Scholar 

  19. Kaptein, R., Zuiderweg, E.R.P., Scheek, R.M., Boelens, R., van Gunsteren, W.F. (1985). A protein structure from nuclear magnetic resonance data. Lac repressor headpiece. J. Mol. Biol. 182, 179–182.

    Article  Google Scholar 

  20. Clore, M.G., Gronenbom, A.M., Brünger, A.T., Karplus, M. (1985). Solution conformation of a heptadecapeptide comprising the DNA binding helix F of the cyclic AMP receptor protein of Escherichia coli. Combined used of 1H nuclear magnetic resonance and restrained molecular dynamics. J. Mol. Biol. 186,435–455.

    Article  Google Scholar 

  21. Keepers, J.W., James, T.L.(1984).A theoretical study of distance determination by NMR two-dimensional nuclear Overhauser effect spectra. J. Magn. Reson. 57, 404–426.

    Google Scholar 

  22. Olejniczak, E.T., Gampe, R.T. Jr, Fesik, S.W. (1986). Accounting for spin diffusion in the analysis of 2D NOE data. J. Magn. Reson. 67, 28–41.

    Google Scholar 

  23. Boelens, R., Koning, T.M.G., Kaptein, R. (1988). Determination of biomolecular structures from proton-proton NOEs using a relaxation matrix approach. J. Mol. Struct. 173, 299–311.

    Article  ADS  Google Scholar 

  24. Boelens, R., Koning, T.M.G., van der Marel, G.A., van Boom, J.H., Kaptein, R. (1989a). Iterative procedure for structure determination from proton-proton NOEs using a full relaxation matrix approach. Application to a DNA octamer. J. Magn. Reson. 82, 290–308.

    Google Scholar 

  25. Koning, T.M.G. (1990a). IRMA: Iterative Relaxation Matrix Approach for NMR structure determination. Application to DNA fragments. PhD thesis, Utrecht University, the Netherlands.

    Google Scholar 

  26. Borgias, B.A., Cochin, M., Kerwood, D.J., James, T.L. (1990). Relaxation matrix analysis of 2D NMR data. Progress in NMR Spectroscopy 22, 83–100.

    Article  Google Scholar 

  27. Koehl, P. Lefèvre, J.-P. (1990). The reconstruction of the relaxation matrix from an incomplete set of nuclear Overhauser effects. J. Magn. Reson. 86, 565–583.

    Google Scholar 

  28. Madrid, M., Llinás, E., Llinás, M. (1991). Model-independent refinement of interproton distances generated from 1H-NMR Overhauser intensities. J. Magn. Reson. 93,329–346.

    Google Scholar 

  29. Van de Ven, F.J.M., Blommers, M.J.J., Schouten, R.E., Hilbers, C.W. (1991). Calculation of interprotons distances from NOE intensities. A relaxation matrix approach without requirement of a molecular model. J. Magn. Reson. 94, 140–151.

    Google Scholar 

  30. Edmonson, S. (1992). NOE R-factors and structural refinement using FIRM, an iterative relaxation matrix program. J. Magn. Reson. 98, 283–298.

    Google Scholar 

  31. Leeflang, B.R., Kroon-Batenburg, L.M.J. (1992). CROSREL: Full relaxation matrix analysis for NOESY and ROESY NMR spectroscopy. J. Biomol. NMR 2, 495–518.

    Article  Google Scholar 

  32. Yip, P., Case D.A. (1989). A new method for refinement of macromolecular structures based on nuclear Overhauser effect spectra. J. Magn. Reson. 83, 643–648.

    Google Scholar 

  33. Solomon, I. (1955). Relaxation processes in a system of two spins. Phys. Rev. 99, 559–565.

    Article  ADS  Google Scholar 

  34. Tropp, J. (1980). Dipolar relaxation and nuclear Overhauser effects in nonrigid molecules: The effect of fluctuating internuclear distances. J. Chem. Phys. 72, 6035–6043.

    Article  ADS  Google Scholar 

  35. Macura, S., Ernst, R.R. (1980). Elucidation of cross relaxation in liquids by two-dimensional NMR spectroscopy. Molec. Phys. 41, 95–117.

    Article  ADS  Google Scholar 

  36. Peng, J., Wagner, G. (1992a). Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J. Magn. Reson. 98, 308–332.

    Google Scholar 

  37. Peng, J., Wagner, G. (1992b). Mapping of the spectral densities of N-H bond motions in Eglin C using heteronuclear relaxation experiments. Biochemistry 31, 8571–8586.

    Article  Google Scholar 

  38. Olejniczak, E.T., Dobson, C.M., Karplus, M., Levy, R.M. (1984). Motional averaging of proton nuclear Overhauser effects in proteins. Prediction from a molecular dynamics simulation of lysozyme. J. Am. Chem. Soc. 106, 1923–1930.

    Article  Google Scholar 

  39. Koning, T.M.G., Boelens, R., van der Marel, G.A., van Boom, J.H., Kaptein, R. (1991). Structure determination of a DNA octamer in solution by NMR spectroscopy. Effect of fast local motions. Biochemistry 30, 3787–3797.

    Article  Google Scholar 

  40. Lipari, G., Szabo, A. (1982a). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559.

    Article  Google Scholar 

  41. Lipari, G., Szabo, A. (1982b). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc. 104, 4559–4570.

    Article  Google Scholar 

  42. Koning, T.M.G., Boelens, R., Kaptein, R. (1990b). Calculation of the nuclear Overhauser effect and the determination of proton-proton distances in the presence of internal motions. J. Magn. Reson. 90, 111–123.

    Google Scholar 

  43. Forster, M.J. (1990). Comparison of computational methods for simulating nuclear Overhauser effects in NMR spectroscopy. J. Comp. Chem. 12, 292–300.

    Google Scholar 

  44. Marion, D., Genest,. M., Ptak, M. (1987). Reconstruction of NOESY maps. A requirement for a reliable conformation analysis of biomolecules using 2D NMR. Biophys. Chem. 28, 235–244.

    Article  Google Scholar 

  45. Kumar, A., Wagner G., Ernst, R.R., Wüthrich K. (1981). Buildup rates of the nuclear Overhauser effect measured by two-dimensional proton magnetic resonance spectroscopy: implications for studies of protein conformation. J. Am. Chem. Soc. 103, 3654–3658.

    Article  Google Scholar 

  46. Wagner, G., Wüthrich, K. (1979). Truncated driven nuclear Overhauser effect (TOE). A new technique for studies of selective proton-proton Overhauser effects in the presence of spin diffusion. J. Magn. Reson. 33, 675–680.

    Google Scholar 

  47. Dobson, C.M., Olejniczak, E.T., Poulsen, F.M., Ratcliffe, R.G. (1982). Time development of proton nuclear Overhauser effects in proteins. J. Magn. Reson. 48, 97–110.

    Google Scholar 

  48. Kalk, A., Berendsen H.J.C. (1976). Proton magnetic relaxation and spin diffusion in proteins. J. Magn. Reson. 25, 343–366.

    Google Scholar 

  49. Wüthrich, K. (1986). NMR of proteins and nucleic acids. Wiley, New York.

    Google Scholar 

  50. Post, C.B., Meadows, R.P., Gorenstein, D.G. (1990). On the evaluation of interproton distances for three-dimensional structure determination by NMR using a relaxation rate matrix analysis. J. Am. Chem. Soc. 112, 6796–6803.

    Article  Google Scholar 

  51. Thomas, P.D., Basus, V.J., James, T.L. (1991). Protein solution structure determination using distances from 2D NOE experiments: effect of approximations on the accuracy of derived structures. Proc. Natl. Acad. Sci. USA 88, 1237–1241.

    Article  ADS  Google Scholar 

  52. Bonvin, A.M.J.J., Rullmann, J.A.C., Boelens, R., Kaptein, R. (1993a). “Ensemble” iterative relaxation matrix approach: a new NMR refinement protocol applied to the solution structure of crambin. PROTEINS: Struct.,Funct. & Genetics 15, 385–400.

    Article  Google Scholar 

  53. Hendrickson, W.A., Teeter, M.M. (1981). Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature 220, 107–113.

    Article  Google Scholar 

  54. Baleja, J.D., Moult, J., Sykes, B.D. J. (1990). Distance measurement and structure refinement with NOE data. J. Magn. Reson. 87, 375–384.

    Google Scholar 

  55. Bonvin, A.M.J.J., Boelens, R., Kaptein, R. (1991a). Direct NOE refinement of biomolecular structures using 2D NMR data. J. Biomol. NMR 1, 305–309.

    Google Scholar 

  56. Mertz, J.E., Güntert, P., Wüthrich, K., Braun, W. (1991). Complete relaxation matrix refinement of NMR structures of proteins using analytically calculated dihedral angle derivatives of NOE intensities. J. Biomol. NMR 1, 257–269.

    Article  Google Scholar 

  57. Nilges, M., Habazettl, J., Brünger, A.T., Holak, T.A. (1991a). Relaxation matrix refinement of the solution structure of Squash Trypsin Inhibitor. J. Mol. Biol. 219, 499–510.

    Google Scholar 

  58. Stawarz, B., Genest, M., Genest, D. (1992). A new constraint potential for the structure refinement of biomolecules in solution using experimental NOE intensity. Biopolymers 32, 633–642.

    Article  Google Scholar 

  59. Torda, A.E., Scheek, R.M., van Gunsteren, W.F. (1989). Time-dependent distance restraints in Molecular Dynamics simulations. Chem. Phys. Lett. 157, 289–294.

    Article  ADS  Google Scholar 

  60. Scheek, R.M., Torda, A.E., Kemmink, J., van Gunsteren, W.F. (1991). Structure determination by NMR: the modeling of NMR parameters as ensemble averages. In: “Computational aspects of the study of biological macromolecules by NMR”. Hoch, J. C. et al. (eds), Plenum Press, New York, 209–217.

    Google Scholar 

  61. Torda, A.E., Brunne, R.M., Huber, T., Kessler, H., van Gunsteren, W.F. (1993). Structure refinement using time-averaged J-coupling constant restraints. J. Biomol. NMR 3, 55–66.

    Google Scholar 

  62. Bonvin, A.M.J.J., Boelens, R., Kaptein, R. (1994). Time-and ensemble-averaged direct NOE restraints. J. Biomol. NMR, 4, 142–149.

    Article  Google Scholar 

  63. Pothier, J., Gabarro-Arpa, J., Le Bret, M. (1993). MORNIN: A quasi-Newtonian energy minimizer fitting the nuclear Overhauser data. J. Comp. Chem. 14, 226–236.

    Google Scholar 

  64. Baleja, J. (1992). NOE-based structure refinement without the use of NMR-derived interproton distances. J. Magn. Reson. 96, 619–623.

    Google Scholar 

  65. Blumenthal, L.M. (1970). Theory and application of distance geometry. Chelsea, New York.

    Google Scholar 

  66. Havel, T.F. (1991). An evaluation of computational strategies for use in the determination of protein structures from distance constraints obtained by nuclear magnetic resonance. Prog. Biophysics Molec. Biol. 56, 43–78.

    Article  Google Scholar 

  67. Güntert, P., Braun, W., Wüthrich, K. (1991). Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J. Mol. Biol. 217,517–530.

    Article  Google Scholar 

  68. De Vlieg, J., Boelens, R., Scheek, R.M., Kaptein, R., van Gunsteren, W.F. (1986). Restrained Molecular Dynamics procedure for protein tertiary structure determination from NMR data: a Lac repressor headpiece structure based on information on f-couplings and from presence and absence of NOE’s. Isr. J. Chem. 27, 181–188.

    Google Scholar 

  69. Holak, T.A., Gondol, D., Otlewski, J., Wilusz, T. (1989). Determination of the complete three-dimensional structure of the trypsin inhibitor from squasl seeds in aqueous solution by nuclear magnetic resonance and a combination of distance geometry and dynamical simulated annealing. J. Mol. Biol. 210, 635–648.

    Article  Google Scholar 

  70. Bruccoleri, R.E., Karplus, M. (1990). Conformational sampling using high-temperature molecular dynamics. Biopolymers 29, 1847–1862.

    Article  Google Scholar 

  71. Van Schaik, R.C., van Gunsteren, W.F., Berendsen H.J.C. (1992). Conformational search by potential energy annealing: algorithm and application to cyclosporin A. J. Computer-Aided Mol. Design 6, 97–112.

    Article  ADS  Google Scholar 

  72. Crippen, G.M. (1982). Conformational analysis by conformational embedding. J. Comp. Chem. 3, 471–476.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaptein, R., Bonvin, A.M.J.J., Boelens, R. (1997). Biomolecular Structure and Dynamics: Recent Experimental and Theoretical Advances. In: Vergoten, G., Theophanides, T. (eds) Biomolecular Structure and Dynamics. NATO ASI Series, vol 342. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5484-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5484-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6307-4

  • Online ISBN: 978-94-011-5484-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics