Skip to main content

Approaches to Protein-Ligand Binding from Computer Simulations

  • Chapter
Biomolecular Structure and Dynamics

Abstract

Accurate computation of protein-ligand binding affinities is a challenging goal with great potential value in the design of therapeutic agents. Applications of statistical mechanics simulations to the problem are considered that feature full atomic-level descriptions of the protein, ligand and aqueous environment. Basic concepts on the methodology and intermolecular interactions in solution are presented along with results of Monte Carlo simulations for binding of inhibitors by trypsin and thrombin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lybrand, T. P. (1995) Curr. Opin. Struct. Biol. 5, 224.

    Article  Google Scholar 

  2. Verlinde, C. L. M. J. and Hol, W. G. H. (1994) Structure 2, 577.

    Article  Google Scholar 

  3. Jorgensen, W. L. (1991) Chemtracts - Org. Chem. 4,91.

    Google Scholar 

  4. Kollman, P. A. (1993) Chem. Rev. 93, 2395.

    Article  Google Scholar 

  5. Jorgensen, W. L. and Tirado-Rives, J. (1996) J. Phys. Chem. 100, 14508.

    Article  Google Scholar 

  6. See, for example: Jorgensen, W. L. and Nguyen, T. B. (1993) Proc. Natl. Acad. Sci. USA 90, 1194. Duffy, E. M. and Jorgensen, W. L. (1994) J. Am. Chem. Soc. 116, 6337.

    Google Scholar 

  7. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. and Klein, M. L. (1983) J. Chem. Phys. 79, 926.

    Article  ADS  Google Scholar 

  8. Jorgensen, W. L. and Tirado-Rives, J. (1988) J. Am. Chem. Soc. 110, 1657.

    Article  Google Scholar 

  9. Jorgensen, W. L. and Severance, D. L. (1990) J. Am. Chem. Soc. 112,4768.

    Article  Google Scholar 

  10. Jorgensen, W. L., Maxwell, D. S. and Tirado-Rives, J. (1996) J. Am. Chem. Soc. 118,0000.

    Article  Google Scholar 

  11. Ã…qvist, J., Medina, C. and Sammuelsson, J.-E. (1994) Protein Eng. 7, 385.

    Article  Google Scholar 

  12. Ã…qvist, J. and Mowbray, S. M. (1995) J. Biol. Chem. 270,9978.

    Google Scholar 

  13. Hansson, T. and Ã…qvist, J. (1995) Protein Eng. 8, 1137.

    Article  Google Scholar 

  14. Carlson, H. A. and Jorgensen, W. L. (1995) J. Phys. Chem. 99,10667.

    Article  Google Scholar 

  15. Paulsen, M. D. and Ornstein, R. L. (1996) Protein Eng. 9, 567.

    Article  Google Scholar 

  16. Jones-Hertzog, D. K. and Jorgensen, W. L., submitted for publication.

    Google Scholar 

  17. Jorgensen, W. L. (1995) BOSS, Version 3.6; Yale University; New Haven, CT.

    Google Scholar 

  18. Jorgensen, W. L. (1996) MCPRO, Version 1.4; Yale University; New Haven,CT.

    Google Scholar 

  19. Frisch, M. J., Trucks, G. W., Head-Gordon, M., Gill, P. M. W., Wong, M. W., Foresman, J. B., Johnson, B. G., Schelgal, H. B., Robb, M. A., Replogle, E. S., Gomperts, R., Andres, J. L., Raghavachari, K., Binkley, J. S., Gonzalez, C., Martin, R. L., Fox, D. J., Defrees, D. J., Baker, J., Stewart, J. J. P. and Pople, J. A. (1994) Gaussian94, Revision A; Gaussian, Inc.; Pittsburgh, PA.

    Google Scholar 

  20. Jorgensen, W. L., Briggs, J. M. and M. L. Contreras (1990) J. Phys. Chem. 94,1683.

    Article  Google Scholar 

  21. Marquart, M., Walter, J., Deisenhofer, J., Bode, W. and Huber, R. (1983) Acta Cryst. B 39,480.

    Article  Google Scholar 

  22. Banner, D. W. and Hadvary, P. (1991) J. Biol. Chem. 266, 20085.

    Google Scholar 

  23. Jorgensen, W. L. (1989) J. Am. Chem. Soc. 111, 3770.

    Article  Google Scholar 

  24. Krikorian, S. E. (1982) J. Phys. Chem. 86, 1875. Klotz, I. M. and Franzen, J. S. (1962) J. Am. Chem. Soc. 84, 3461.

    Google Scholar 

  25. Blokzijl, W. and Engberts, J. B. F. N. (1993) Angew. Chem. Int. Ed. Engl. 32,1545.

    Article  Google Scholar 

  26. Weber, P. C., Wendoloski, J. J., Pantoliano, M. W. and Salenum, F. R. (1992) J. Am. Chem. Soc. 114,3197.

    Article  Google Scholar 

  27. Mares-Guia, M., Nelson, D. L. and Rogana, E. (1977) J. Am. Chem. Soc. 99,2331.

    Article  Google Scholar 

  28. Kikumoto, R., Tamao, Y., Teauka, T., Tonomura, S., Hara, H. and Ninomiya, K. (1984) Biochemistry 23, 85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jorgensen, W.L. et al. (1997). Approaches to Protein-Ligand Binding from Computer Simulations. In: Vergoten, G., Theophanides, T. (eds) Biomolecular Structure and Dynamics. NATO ASI Series, vol 342. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5484-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5484-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6307-4

  • Online ISBN: 978-94-011-5484-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics