Skip to main content

Geometries and Stabilities of G·GC, T·AT, A·AT an C·GC Nucleic Acid Base Triplets

  • Chapter
Biomolecular Structure and Dynamics

Part of the book series: NATO ASI Series ((NSSE,volume 342))

  • 222 Accesses

Abstract

Geometrical structures and stabilities of G•GC, T•AT, A •AT and C•GC nucleic acid triplets have been computed by using the AM1 and PM3 advanced semimpirical methods. Results indicate that the third nucleic acid base binds with the corresponding Watson-Crick base-pair via Hoogsteen hydrogen bonds. Where possible comparisons have been made with previous ab initio investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. D. Wells, D. A. Collier, J. C. Hanvey, M. Shimizu and F. Wohlrab, FABES J. 2 (1988) 2939.

    Google Scholar 

  2. S. F. Singleton and P. B. Dervan, J. Am. Chem. Soc. 114 (1992) 6957.

    Article  Google Scholar 

  3. G. Duval-Valentin, N. T. Thuong and C. Helene, Proc. Natl. Acad. Sci. USA 89 (1992) 504.

    Article  ADS  Google Scholar 

  4. T. Ito, C. L. Smith and C. R. Cantor, Proc. Natl. Acad. Sci. USA 89 (1992) 495.

    Article  ADS  Google Scholar 

  5. D. S. Pilch, C. Levenson and R. H. Dchafer, Biochemistry 30 (1991) 6081.

    Article  Google Scholar 

  6. J. N. Davidson and W. E. Cohn (eds) Preogress in Nucleic Acid Research and Molecular Biology, Academic Press, New York, vol. 10, 1970.

    Google Scholar 

  7. A. Rich and V. L. Raybahnday, Ann. Rev. Biochem. 45 (1976) 805.

    Article  Google Scholar 

  8. P. A. Beal and P. B. Dervan, J. Am. Chem. Soc. 114 (1992) 4976.

    Article  Google Scholar 

  9. J. S. Koh and P. B. Dervan, J. Am. Chem. Soc. 114 (1992) 1470.

    Article  Google Scholar 

  10. S.-P. Jiang, R. L. Jernigan, K.-L. Ting, J.-L. Syi and G. Raghunathan, J. Biomol. Struct. Dyn. 12 (1994) 383.

    Article  Google Scholar 

  11. S. Weerasinghe, P. E. Smith, V. Mohan, Y.-K. Cheng and B. M. Pettitt, J. Am. Chem. Soc. 117 (1995) 2147.

    Article  Google Scholar 

  12. M. Kamiya, H. Torigoe, H. Shind and A. Sarai, J. Am. Chem. Soc. 118 (1996) 4532.

    Article  Google Scholar 

  13. H. E. Moser and P. B. Dervan, Scienze 238 (1987) 645.

    Article  ADS  Google Scholar 

  14. T. Le Doan, L. Perronault, D. Prasenth, N. Habhoub, J. L. Decant, N. T. Thuong, J. Lhomme and C. Helene, Nucleic Acid Res. 15 (1987) 7749.

    Article  Google Scholar 

  15. P. A. Bell and P. B. Dervan, Science 251 (1991) 1360.

    Article  ADS  Google Scholar 

  16. P. Rajagopal and J. Feigon, Nature 339 (1989) 637.

    Article  ADS  Google Scholar 

  17. C. de los Santos, M. Rosen and D. Patel, Biochemistry 28 (1989) 7282.

    Article  Google Scholar 

  18. D. H. Live, I. Radhakrishnan, V. Misra and D. Patel, J. Am. Chem. Soc. 113 (1991) 4687.

    Article  Google Scholar 

  19. K. Yoon, C. A. Hobbs, K. Koch, M. Sardaro, R. Kutny and A. L. Weis, Proc. Natl. Acad. Sci. USA 89 (1992) 3840 and references cited therein.

    Article  ADS  Google Scholar 

  20. J.-S. Sun and C. Helene, Curr. Opin. Struct. Biol. 3 (1993) 345 and references cited therein.

    Article  Google Scholar 

  21. M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 98 (1977) 4899.

    Article  Google Scholar 

  22. J. J. P. Stewart, J. Comp. Chem. 10 (1989) 209, ibidem 221.

    Article  Google Scholar 

  23. M. J. S. Dewar and C. Cone, J. Am. Chem. Soc. 99 (1977) 372

    Article  Google Scholar 

  24. M. J. S. Dewar, E. G. Zoebish, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc. 107 (1985) 3902.

    Article  Google Scholar 

  25. P. Davis, L. W. Burggraf and D. M. Storch, J. Comp. Chem. 12 (1990) 350.

    Article  Google Scholar 

  26. J. J. P. Stewart, QCPE 455, Department of Chemistry, Indiana University, Bloomington, Indiana.

    Google Scholar 

  27. L. Katz, K. Tomita and A. Rich, Acta Cryst. 21 (1966) 754.

    Article  Google Scholar 

  28. F. S. Matthews and A. Rich, J. Mol. Biol. 8 (1964) 89.

    Article  Google Scholar 

  29. E. V. Haschemeyer and H. M. Sabel, Acta Cryst. 18 (1965) 525.

    Article  Google Scholar 

  30. W. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag, New York, 1984.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marino, T., Russo, N., Sarubbo, A., Toscano, M. (1997). Geometries and Stabilities of G·GC, T·AT, A·AT an C·GC Nucleic Acid Base Triplets. In: Vergoten, G., Theophanides, T. (eds) Biomolecular Structure and Dynamics. NATO ASI Series, vol 342. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5484-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5484-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6307-4

  • Online ISBN: 978-94-011-5484-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics