Skip to main content

Pharmacologic support of the hemodynamically unstable patient

  • Chapter
Book cover Critical Care Nephrology

Abstract

Critically ill patients who manifest hemodynamic instability, have cardiovascular homeostatic mechanisms which are failing to compensate for the stresses to which they are exposed. Accordingly, organ perfusion can not be consistently maintained at a level necessary to sustain normal bodily function. At the most basic level, in severe hemorrhagic shock, circulatory homeostatic mechanisms preserve coronary and cerebrovascular blood flow, by maintaining peripheral vasomotor tone and cardiac output at a sufficient enough level to maintain perfusion of maximally dilated coronary and cerebral vessels. This important goal is accomplished by a coordinated autonomic outpouring of sympathetic activity which induces both metabolic, vascular tone and cardiac contractile changes, which collectively sustain heart and brain viability. This maximal stress response, if sustained, induces profound tissue dysfunction of the remainder of the body and is not compatible with life. However, as a transient manoeuvre, it can sustain vital organ function long enough for more definitive manoeuvres to be accomplished, which will be associated with increased visceral organ blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fowler MB, Laser JA, Hopkins GL, Mobe W, Bristow MR. Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive receptor downregulation and subsensitivity to agonist response. Circulation 1986; 74: 1290–302.

    Article  PubMed  CAS  Google Scholar 

  2. Kiuchi K, Sato N, Shannon RP, Vatner DE. Depressed beta-adrenergic receptor and endothelium-mediated vasodilation in conscious dogs with heart failure. Cire Res 1993; 73: 1013–23.

    Article  CAS  Google Scholar 

  3. Lefkowitz RJ, Hausdorff WP, Caron MG. Role of phosphorylation in desensitization of the beta adrenoreceptor. Trends Pharmacol Sci 1990; 11: 190–4.

    Article  PubMed  CAS  Google Scholar 

  4. Stiles GL, Caron MG, Lefkowitz RJ. ß-adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev 1984; 64: 661–743.

    PubMed  CAS  Google Scholar 

  5. Hare JM, Loh E, Creager MA, Colucci WS. Nitric oxide inhibits the positive inotropic response to beta-adrenergic stimulation in humans with left ventricular dysfunction. Circulation 1995; 92: 2198–203.

    Article  PubMed  CAS  Google Scholar 

  6. Ryan J, Sudhir K, Jennings G, Esler M, Dudley F. Impaired reactivity of the peripheral vasculature to pressor agents in alcoholic cirrhosis. Gastroenterology 1993; 105: 1167–72.

    PubMed  CAS  Google Scholar 

  7. Silverman HJ, Penaranda R, Orens JB, Lee NH. Impaired beta-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: Association with myocardial hyporesponsiveness to catecholamines. Crit Care Med 1993; 21: 31–9.

    Article  PubMed  CAS  Google Scholar 

  8. Sibbald WJ, Fox G, Martin C. Abnormalities of vascular reactivity in the sepsis syndrome. Chest 1991; 100: 155S–9S.

    Google Scholar 

  9. Kauman AJ, Hall JA. Murray KJ, Wells FC, Brown MJ. A comparison of the effects of adrenaline and noradrenaline on human heart: the role of beta, and beta, adrenoceptors in the stimulation of adenylate cyclase and contractile force. Eur Heart J 1989; 10 (supp B): 29–37.

    Article  Google Scholar 

  10. Bersten AD, Hersch M, Cheung H, Rutledge FS, Sibbald WI. The effect of various sympathomimetics on the regional circulations in hyperdynamic sepsis. Surgery 1992; 112: 549–61.

    PubMed  CAS  Google Scholar 

  11. Goertz AW, Schmidt M, Seefelder C, Lindner KH, Georgieff M. The effect of phenylephrine bolus administration on left ventricular function during isoflurane-induced hypotension. Anesth Analg 1993; 77: 227–231.

    PubMed  CAS  Google Scholar 

  12. Goertz AW, Lindner KH, Schutz W, Schrimer U, Beyer M, Georgieff M. Influence of phenylephrine bolus administration on left ventricular filling dynamics in patients with coronary artery disease and patients with valvular aortic stenosis. Anesthesiology 1994; 81: 4958.

    Article  Google Scholar 

  13. Crystal GJ, Kim SJ, Salem MM, Abdel-Latif M. Myocardial oxygen supply/demand relations during phenylephrine infusions in dogs. Anesth Analg 1991; 73: 283–8.

    Article  PubMed  CAS  Google Scholar 

  14. Gregory JS, Bonfiglio MF, Dasta JF, Reilley TE, Townsend MC, Flanchaum L. Experience with phenylephrine as a component of the pharmacologic support of septic shock. Crit Care Med 1991; 19: 1395–400.

    Article  PubMed  CAS  Google Scholar 

  15. Insel PA, Snavely MD. Catecholamines and the kidney: receptors and renal function. Ann Rev Physiol 1981; 43: 625–36.

    Article  CAS  Google Scholar 

  16. Cesare JF, Ligas JR, Hirvela ER. Enhancement of urine output and glomerular filtration in acutely oligurie patients using low dose norepinephrine. Cire Shock 1993; 39: 207–10.

    CAS  Google Scholar 

  17. Desjars P, Pinaud M. Bugnon D, Tasseau F. Norepinephrine therapy has no deleterious renal effects in human septic shock. Crit Care Med 1989; 17: 426–9.

    Article  PubMed  CAS  Google Scholar 

  18. Schaer GL, Fink MP, Parillo JE. Norepinephrine alone versus norepinephrine plus low-dose dopamine: enhanced renal blood flow with combined pressor therapy. Crit Care Med 1985; 13: 492–6.

    Article  PubMed  CAS  Google Scholar 

  19. Revelly JP, Gardaz JP, Nussberger J, Schutz Y, Chiolero R. Effect of epinephrine on oxygen consumption and delivery during progressive hemorrhage. Crit Care Med 1995; 23: 1272–8.

    Article  PubMed  CAS  Google Scholar 

  20. Gombos EA, Hulet WH, Bopp P, Goldring W, Baldwin DS, Chasis H. Reactivity of renal and systemic circulations to vasoconstrictor agents in normotensive and hypertensive subjects. J Clin Invest 1962; 41: 203–17.

    Article  PubMed  CAS  Google Scholar 

  21. Robie NW, Goldberg LI. Comparative systemic and regional hemodynamic effects of dopamine and dobutamine. Am Heart J 1975; 90: 340–5.

    Article  PubMed  CAS  Google Scholar 

  22. Schwartz LB, Gerwertz BL. The renal response to low dose dopamine. J Surg Res 1988; 45: 574–88.

    Article  PubMed  CAS  Google Scholar 

  23. Maekawa K, Liang C-S, Hood WB Jr. Comparison of dobutamine and dopamine in acute myocardial infarction. Circulation 1983; 67: 750–9.

    Article  PubMed  CAS  Google Scholar 

  24. Meier-Hellmann A, Reinhart K. Effects of catecholamines on regional perfusion and oxygenation in critically ill patients. Acta Anaes Scand Supplement 1995: 107: 239–48.

    Article  CAS  Google Scholar 

  25. Baldwin L, Henderson A, Hickman P. Effect of postoperative low-dose dopamine on renal function after elective major vascular surgery. Ann Intern Med 1994; 120: 744–7.

    PubMed  CAS  Google Scholar 

  26. Ruokonen E, Takala J, Usaro A. Effect of vasoactive treatment on the relationship between mixed venous and regional oxygen saturation. Crit Care Med 1991; 19: 1365–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ruokonen E, Takata J, Kari A, Saxen H, Mertsola J, Hansen E.T. Regional blood flow and oxygen transport in septic shock. Crit Care Med 1993; 21: 1296–303.

    Article  PubMed  CAS  Google Scholar 

  28. Bersten AD, Rutten Ai. Renovascular interaction of epinephrine, dopamine, and intraperitoneal sepsis. Crit Care Med 1995: 23: 537–44.

    Article  PubMed  CAS  Google Scholar 

  29. Olsen NV, Lund J. Jensen PF et al.Dopamine, dobutamine, or dopexamine. A comparison of renal effects in unanesthetized human volunteers. Anesthesiology 1993; 79: 685–94.

    Article  PubMed  CAS  Google Scholar 

  30. Duke GJ, Breidis JH, Weaver RA. Renal support in critically ill patients: low-dose dopamine or low-dose dobutamine? Crit Care Med 1994; 22: 1919–25.

    PubMed  CAS  Google Scholar 

  31. Ruffolo RR Jr, Messick K, Horng JS. Interactions of the enantiomers of 3–0-methyldobutamine with alpha and beta-adrenoreceptors in vitro. Nauyn Schmeidebergs Arch Pharmacol 1985; 329: 244–52.

    Article  CAS  Google Scholar 

  32. Colucci WS, Wright RF, Jaski BE, Fifer MA, Braunwald E. Milrinone and dobutamine in severe heart failure: differing hemodynamic effects and individual patient responsiveness. Circulation 1986; 73(s3): 111175–111183.

    Google Scholar 

  33. Silverman HJ, et al.Impaired beta-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: Association with myocardial hypo-responsiveness to catecholamines. Crit Care Med 1993; 21: 31–9.

    Article  PubMed  CAS  Google Scholar 

  34. Leier CV, Hebran PT, Huss P, Bush CA, Lewis RP. Comparative systemic and regional hemodynamic effects of dopamine and dobutamine in patients with cardiomyopathic heart failure. Circulation 1978; 58: 466–75.

    Article  PubMed  CAS  Google Scholar 

  35. MacCannell KL, Giraud GD, Hamilton PL, Groves G. Hemodynamic responses to dopamine and dobutamine infusions as a function of duration of infusion. Pharmacology 1983; 26: 26–39.

    Article  Google Scholar 

  36. Unverferth DV, Magorien RD, Altschuld R, Kolibash AJ, Lewis RP, Leier CV. Tolerance to dobutamine after a 72 hour continuous infusion. Am J Med 1980; 69: 262–6.

    Article  PubMed  CAS  Google Scholar 

  37. MacGregor DA, Butterworth JF 4th, Zaloga CP, et al.Hemodynamic and renal effects of dopexamine and dobutamine in patients with reduced cardiac output following coronary artery bypass grafting. Chest 1994; 106: 835–41.

    Article  PubMed  CAS  Google Scholar 

  38. Fitton A, Benfield P. Dopexamine hydrochloride. A review of its pharmacodynamie and pharmacokinetic properties and therapeutic potential in acute cardiac insufficiency. Drugs 1990; 39: 308–30.

    Article  PubMed  CAS  Google Scholar 

  39. Martin SW, Broadley KJ. Renal vasodilatation by dopexamine and fenoldopam due to alpha 1-adrenoceptor blockade. Brit J Pharmacol 1995; 115: 349–55.

    Article  CAS  Google Scholar 

  40. Boyd O, Grounds RM, Bennett ED. The use of dopexamine hydrochloride to increase oxygen delivery perioperatively. Anesth Analg 1993; 76: 372–6.

    PubMed  CAS  Google Scholar 

  41. Uusaro A, Ruokonen E, Takala J. Gastric mucosal pH does not reflect changes in splanchnic blood flow after cardiac surgery. Br J Anaesth 1995; 74: 149–54.

    Article  PubMed  CAS  Google Scholar 

  42. Maynard ND, Bihari DJ, Dalton RN, Smithies MN, Mason RC. Increasing splanchnic blood flow in the critically ill. Chest 1995; 108: 1648–54.

    Article  PubMed  CAS  Google Scholar 

  43. Tighe D, Moss R, Heywood G, al-Saady N, Webb A, Bennett D. Goal-directed therapy with dopexamine, dobutamine, and volume expansion: effects of systemic oxygen transport on hepatic ultrastructure in porcine sepsis. Crit Care Med 1995; 23: 1997–2007.

    Article  PubMed  CAS  Google Scholar 

  44. Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. J Am Med Assoc 1993; 270: 2699–707.

    Article  CAS  Google Scholar 

  45. Hayes J, Bowling N, Boden G, Kauffman R. Molecular basis for the cardiovascular activities of amrinone and AR-L57. J Pharmacol Exp Ther 1984; 230: 124–32.

    PubMed  CAS  Google Scholar 

  46. Chatterjee K. Phosphodiesterase inhibitors: alterations in systemic and coronary hemodynamics. Basic Res Cardiol 1989; 84 (s 1): 213–24.

    Article  PubMed  Google Scholar 

  47. Feneck RO. Intravenous milrinone following cardiac surgery: I. Effects of bolus infusion followed by variable dose maintenance infusion. The European Milrinone Multicentre Trial Group. J Cardiothorac Vasc Anesth 1992; 6: 554–62.

    Article  PubMed  CAS  Google Scholar 

  48. Giroir BP, Beutler B. Effect of amrinone on tumor necrosis factor production in endotoxic shock. Circ Shock 1992; 36: 200–7.

    PubMed  CAS  Google Scholar 

  49. Bersten AD, Holt AW. Vasoactive drugs and the importance of renal perfusion pressure. New Horizions 1995; 3: 650–61.

    CAS  Google Scholar 

  50. Martin C, Papazian L, Perrin G, Saux P, Gouin F. Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest 1993; 103: 1826–31.

    Article  PubMed  CAS  Google Scholar 

  51. Romand J, Attewell J, Pinsky MR. Increases in peripheral 02 demand affect blood flow distribution in hemorrhaged fogs. Am J Respir Crit Care Med 1996; 153: 203–10.

    PubMed  CAS  Google Scholar 

  52. Rudis MI, Basha MA, Zarowitz BJ. Is it time to reposition vasopressors and inotropes in sepsis? Crit Care Med 1996; 24: 525–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mehta, N.K., Pinsky, M.R. (1998). Pharmacologic support of the hemodynamically unstable patient. In: Critical Care Nephrology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5482-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5482-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6306-7

  • Online ISBN: 978-94-011-5482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics