Skip to main content

Renal alterations in the septic patient

  • Chapter
Critical Care Nephrology
  • 41 Accesses

Abstract

Considering the fact that sepsis, in varying guises, accounts wholly or in part, for more than 50% of cases of acute renal failure 11, 2], surprisingly little is known about the pathogenesis of this type of renal dysfunction. Many different experimental models have been studied in an attempt to understand the mechanisms involved. However, some of these experimental manoeuvres are of doubtful relevance to clinical practice, and do not reproduce the typical features of sepsis in patients. For example, although it seems clear that bacterial endotoxin, by activating a cascade of mediator systems, is focal to development of clinical sepsis, infusion of endotoxin alone into the isolated perfused kidney has no consistent effect on renal function or structure [3, 4]. This emphasises the extent to which secondary events, triggered by sepsis, are critical to the development of organ dysfunction. Understanding these mechanisms is crucial to the effective diagnosis and treatment of this type of acute renal failure [5, 6]. Many of the observations made in experimental models have still to be tested in clinical studies, and this remains a challenging area in terms of current management and future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rasmussen HH, Ibels LS. Acute renal failure. Multivariate analysis of causes and risk factors. Am J Med 1982; 73: 211–8.

    Article  PubMed  CAS  Google Scholar 

  2. Wiecek A, Zeier M, Ritz E. Role of infection in the genesis of acute renal failure. Nephrol Dial Transplant 1994; 9 (Supp): 40–4.

    PubMed  Google Scholar 

  3. Cohen JJ, Black AJ, Wertheim SJ. Direct effects of endotoxin on the function of the isolated perfused rat kidney. Kidney Int 1990; 37: 1219–26

    Article  PubMed  CAS  Google Scholar 

  4. Rector F, Goyal S, Rosenberg IK, Lucas CE. Sepsis: a mechanism for vasodilatation in the kidney. Ann Surgery 1973; 178: 222–6

    Article  CAS  Google Scholar 

  5. Linton AL, Cumming AD. Acute renal failure in sepsis. In: Solez K (ed). Acute Renal Failure, Marcel Dekker, New York, 1990.

    Google Scholar 

  6. Zager RA. Sepsis-associated acute renal failure: some potential pathogenetic and therapeutic insights. Nephrol Dial Transplant 1994; 9 (Supp): 164–7.

    PubMed  Google Scholar 

  7. Smith HW. Lectures on the Kidney. Lawrence, Kan. University Extension Division, University of Kansas 1943.

    Google Scholar 

  8. Bradley SE, Chasis H, Goldring W, Smith HW. Haemodynamic alterations in normotensive and hypertensive subjects during the pyrogenic reaction. J Clin Invest 1945; 24: 749–58.

    Article  PubMed  CAS  Google Scholar 

  9. Gombos EA, Lee TH, Solinas J, Mitrovic M. Renal response to pyrogens in normotensive and hypertensive man. Circulation 1967: 36: 555–69.

    Article  PubMed  CAS  Google Scholar 

  10. Reddin JL, Starzecki B, Spink WW. Comparative haemodynamic and humoral responses of puppies and adult dogs to endotoxin. Am J Physiol 1966; 210: 540–4.

    PubMed  CAS  Google Scholar 

  11. Priano LL, Wilson RD, Traber DL. Cardio-respiratory alterations in unanaesthetised dogs due to gram negative bacterial endotoxin. Am J Physiol 1971; 220: 705–11.

    PubMed  CAS  Google Scholar 

  12. Hermreck AS, Thal AP. Mechanisms for the high circulatory requirements in sepsis and septic shock. Ann Surgery 1969; 170: 677–93.

    Article  CAS  Google Scholar 

  13. Stone AM, Stein T, LaFortune J, Wise L. Changes in intrarenal blood flow during sepsis. Surg Gynaecol Obst 1979; 148: 731–4.

    CAS  Google Scholar 

  14. Ravikant T, Lucas CE. Renal blood flow distribution in septic hyperdynamic pigs. J Surg Res 1977; 22: 294–8.

    Article  PubMed  CAS  Google Scholar 

  15. Cronenwett JL, Lindenauer SM. Distribution of renal blood flow during bacterial sepsis. J Surg Res 1978; 24: 132–41.

    Article  PubMed  CAS  Google Scholar 

  16. Schaer GL, Fink MP, Chernow B, Ahmed S, Parrillo JE. Renal haemodynamics and prostaglandin E2 excretion in a nonhuman primate model of septic shock. Crit Care Med 1990; 18: 5299.

    Article  Google Scholar 

  17. Townsend MC, Hampton WW, Haybron DM, Schirmer WJ, Fry DE. Effective organ blood flow and bioenergy status in murine peritonitis. Surgery 1986; 100: 20513.

    Google Scholar 

  18. Lucas CE, Rector FE, Werner M, Rosenberg IK. Altered renal homeostasis with acute sepsis. Arch Surgery 1973; 106: 444–9.

    Article  CAS  Google Scholar 

  19. Rector F, Goyal S, Rosenberg IK, Lucas CE. Renal hyperaemia in association with clinical sepsis. Surg Forum 1972; 23: 51–53.

    PubMed  CAS  Google Scholar 

  20. Brenner M, Schaer GL, Mallory DL, Suffredini AF, Parrillo JE. Detection of renal blood flow abnormalities in septic and critically ill patients using a newly designed indwelling thermodilution renal vein catheter. Chest 1990; 98: 170–9.

    Article  PubMed  CAS  Google Scholar 

  21. Carroll GC, Snijder JV. Hyperdynamic severe intravascular sepsis depends upon fluid administration in cynomolgus monkey. Am J Physiol 1982; 243: R131–41.

    PubMed  CAS  Google Scholar 

  22. van Lambalgen AA, Bronsveld W, van den Bos GC, Thijs LG. Distribution of cardiac output, oxygen consumption and lactate production in canine endotoxin shock. Cardiovasc Res 1984; 18: 195–205.

    Article  PubMed  Google Scholar 

  23. van Lambalgen AA, van den Bos GC, Thijs LG. Changes in regional plasma extravasation in rats following endotoxin infusion. Microvasc Res 1987; 34: 116–32.

    Article  PubMed  Google Scholar 

  24. Hussain SNA, Roussos C. Distribution of respiratory muscle and organ blood flow during endotoxic shock in dogs. J Appl Physiol 1985; 59: 1802–8.

    PubMed  CAS  Google Scholar 

  25. Breslow MJ, Miller CF, Parker SD, Waldman AT, Traystman RJ. Effect of vasopressors on organ blood flow during endotoxin shock in pigs. Am J Physiol 1987; 52: H291–300.

    Google Scholar 

  26. Bronsveld W, van Lambalgen AA, van den Bos GC, Thijs LG, Koopman PA. Regional blood flow and metabolism in canine endotoxin shock before, during and after infusion of glucose-insulin-potassium (GKI). Circ Shock 1986; 18: 31–42.

    PubMed  CAS  Google Scholar 

  27. Gullichsen E, Nelimarkka O, Halkola L, Niinikoski J. Renal oxygenation in endotoxin shock in dogs. Crit Care Med 1989; 17: 547–50.

    Article  PubMed  CAS  Google Scholar 

  28. Badr KF, Kelley VE, Rennke HG, Brenner BM. Roles for thromboxane A2 and leukotrienes in endotoxininduced acute renal failure. Kidney Int 1986; 30: 474–80.

    Article  PubMed  CAS  Google Scholar 

  29. Kirkebo A, Tyssebotn I. Renal blood flow distribution during E coliendotoxin shock in dog. Acta Physiol Scand 1980; 108: 367–72.

    Article  PubMed  CAS  Google Scholar 

  30. Tristani FE, Cohen JN. Studies in clinical shock and hypertension. VII. Renal haemodynamics before and during treatment. Circulation 1970; 42: 839–50.

    Article  PubMed  CAS  Google Scholar 

  31. Vigna C, Russo A, Barbano F, Fusilli S, Loperfido F. Color Doppler ultrasonography for the assessment of renal blood flow in heart failure. Chest 1995; 108: 912–8.

    Article  PubMed  CAS  Google Scholar 

  32. Yura T, Yuasa S, Fukunaga M, Badr KF, Matsuo H. Role for Doppler ultrasound in the assessment of renal circulation: effects of dopamine and dobutamine on renal haemodynamics in humans. Nephron 1995; 71: 168–75.

    Article  PubMed  CAS  Google Scholar 

  33. Jensen G, Bardelli M, Volkmann R, Caidahl K, Rose G, Aurell M. Renovascular resistance in primary hypertension: experimental variations detected by means of Doppler ultrasound. J Hypert 1994; 12: 959–64.

    Article  CAS  Google Scholar 

  34. Bardelli M, Jensen G, Volkmann R, Caidahl K, Aurell M. Experimental variation in renovascular resistance in normal man as detected by means of ultrasound. Eur J Clin Invest 1992; 22: 619–24.

    Article  PubMed  CAS  Google Scholar 

  35. Matthews HK, Andrews FM, Daniel GB, Jacobs WR, Held JP. Comparison of standard and radionucleide methods for the measurement of glomerular filtration rate and effective renal blood flow in female horses. Am J Vet Res 1992; 53: 1612–6.

    PubMed  CAS  Google Scholar 

  36. Walker JF, Cumming AD, Lindsay RM, Solez K, Linton AL. The renal response produced by nonhypotensive sepsis in a large animal model. Am J Kidney Dis 1986; 8: 88–97.

    PubMed  CAS  Google Scholar 

  37. Richmond JM, Sibbald WJ, Linton AM, Linton AL. Patterns of urinary protein excretion in patients with sepsis. Nephron 1982; 31: 219–23.

    Article  PubMed  CAS  Google Scholar 

  38. Cortez A, Zito J, Lucas CE, Genick SJ. Mechanism of polyuria in septic patients. Arch Surg 1977; 112: 47–16.

    Article  Google Scholar 

  39. Garrison RN, Wilson MA, Matheson PJ, Spain DA. Nitric oxide mediates redistribution of intrarenal blood flow during bacteraemia. J Trauma 1995; 39: 90–6.

    Article  PubMed  CAS  Google Scholar 

  40. Wang P, Zhou M, Rana MW, Ba ZF, Chaudry IH. Differential alterations in microvascular perfusion in various organs during early and late sepsis. Am J Physiol 1992; 263: G38–43.

    PubMed  CAS  Google Scholar 

  41. Auguste U, Stone AM, Wise L. The effects of Escherichia coli bacteraemia on in vitroperfused kidneys. Ann Surg 1980; 192: 65–8.

    Article  PubMed  CAS  Google Scholar 

  42. Bersten AD, Gnidec AA, Rutledge FS, Sibbald WJ. Hyperdynamic sepsis modifies a PEEP-mediated redistribution in organ blood flows. Am Rev Respir Dis 1990; 141: 1198–208.

    PubMed  CAS  Google Scholar 

  43. Olsen NV, Hansen JM, Kanstrup IL, Richalet JP, Leyssac PP. Renal haemodynamics, tubular function, and response to low-dose dopamine during acute hypoxia in humans. J Appl Physiol 1993; 74: 2166–73.

    PubMed  CAS  Google Scholar 

  44. Perrella MA, Edell ES, Krowka MJ, Cortese DA, Burnett JC Jr. Endothelium-derived relaxing factor in pulmonary and renal circulations during hypoxia. Am J Physiol 1992; 263: R45–50.

    PubMed  CAS  Google Scholar 

  45. Rose CE Jr, Peach MJ, Carey RM. Role of angiotensin II in renal vasoconstriction with acute hypoxaemia and hypercapnic acidosis in conscious dogs. Ren Fail 1994; 16: 229–42.

    Article  PubMed  CAS  Google Scholar 

  46. Walker BR, Brizzee BL. Renal vascular response to combined hypoxia and hypercapnia in conscious rats. Am J Physiol 1988; 254: R552–8.

    PubMed  CAS  Google Scholar 

  47. Bersten AD, Rutten AJ. Renovascular interaction of epinephrine, dopamine and intraperitoneal sepsis. Crit Care Med 1995; 23: 537–44.

    Article  PubMed  CAS  Google Scholar 

  48. Fukuoka T, Nishimura M, Imanaka H, Taenaka N, Yoshiya I, Takezawa J. Effects of norepinephrine on renal function in septic patients with normal and elevated serum lactate levels. Crit Care Med 1989; 17: 1104–7.

    Article  PubMed  CAS  Google Scholar 

  49. O’Hair DP, Adams MB, Tunberg TC, Osborn JL. Relationships among endotoxaemia, arterial pressure, and renal function in dogs. Circ Shock 1989; 27: 199–210.

    PubMed  Google Scholar 

  50. Henrich WL, Hamasaki Y, Said SI, Campbell WB, Cronin RE. Dissociation of systemic and renal effects in endotoxaemia. Prostaglandin inhibition uncovers an important role of renal nerves. J Clin Invest 1982; 69: 691–9.

    Article  PubMed  CAS  Google Scholar 

  51. Zager RA, Gmur DJ, Bredl CR, Eng MJ. Temperature effects on ischaemic and hypoxic renal proximal tubular injury. Lab Invest 1991; 64: 766–76.

    PubMed  CAS  Google Scholar 

  52. Linas SL, Whittenberg D, Parsons PE, Repine JE. Ischaemia increases neutrophil retention and worsens acute renal failure: role of oxygen metabolites and ICAM 1. Kidney Int 1995; 48: 1584–91.

    Article  PubMed  CAS  Google Scholar 

  53. Horl WH, Schafer RM, Horl M, Heidland A. Neutro-phil activation in acute renal failure and sepsis. Arch Surg 1990; 125: 651–4.

    Article  PubMed  CAS  Google Scholar 

  54. Linas SL, Whittenberg D, Parsons PE, Repine JE. Mild renal ischaemia activates primed neutrophils to cause acute renal failure. Kidney Int 1992; 42: 610–6.

    Article  PubMed  CAS  Google Scholar 

  55. Coalson JJ, Hinshaw LB, Guenter CA, Berrell EL, Greenfield LJ. Pathophysiologic responses of the subhuman primate in experimental septic shock. Lab Invest 1975; 32 (4): 561–9.

    PubMed  CAS  Google Scholar 

  56. Groeneveld ABJ. Pathogenesis of acute renal failure during sepsis. Nephrol Dial Transplant 1994; 9 (Supp): 47–51.

    PubMed  Google Scholar 

  57. Lugon JR, Boim MA, Ramos OL, Ajzen H, Schor N. Renal function and glomerular hemodynamics in male endotoxemic rats. Kidney Int 1989; 36: 570–5.

    Article  PubMed  CAS  Google Scholar 

  58. Badr KF, Brenner BM, Ichikawa I. Effects of leukotriene D4 on glomerular dynamics in the rat. Am J Physiol 1987; 22: F239–43.

    Google Scholar 

  59. Churchill PC, Bidani AK, Schwartz MM. Renal effects of endotoxin in the male rat. Am J Physiol 1987; 253: F244–50.

    PubMed  CAS  Google Scholar 

  60. Cumming AD, McDonald JW, Lindsay RM, Solez K, Linton AL. The protective effect of thromboxane synthetase inhibition on renal function in systemic sepsis. Am J Kidney Dis 1989; 13: 114–9.

    PubMed  CAS  Google Scholar 

  61. Voerman HJ, Stehouwer CD, van Kamp GJ, Strack van Schijndel RJ, Groeneveld AB, Thijs LG. Plasma endothelin levels are increased during septic shock. Crit Care Med 1992; 20: 1097–101.

    Article  PubMed  CAS  Google Scholar 

  62. Loutzenhiser R, Epstein M, Hayashi K, Horton C. Direct visualisation of effects of endothelin on the renal vasculature. Am J Physiol 1990; 258: F61–8.

    PubMed  CAS  Google Scholar 

  63. Kohan DE. Role of endothelin and tumour necrosis factor in the renal response to sepsis. Nephrol Dial Transplant 1994; 9 Suppl 4: 73–7.

    PubMed  Google Scholar 

  64. Cumming AD. Renal function in septic shock. In: Vincent JL (ed), Update in Intensive Care and Emergency Medicine, 1989. Springer-Verlag, Berlin, Heidelberg, New York, 348–357.

    Google Scholar 

  65. Redl-Wenzl EM, Armbruster C, Edelmann G, Fischl E, Kolacny M, Wechsler-Fordos A, Sporn P. The effects of norepinephrine on hemodynamics and renal function in severe septic shock states. Intensive Care Med 1993; 19: 1. 51–4

    Google Scholar 

  66. Cumming AD, Nimmo GR. Hemodynamic, renal and hormonal actions of aprotinin in an ovine model of septic shock. Crit Care Med 1992; 20: 1134–1139.

    Article  PubMed  CAS  Google Scholar 

  67. Mene P, Simonson M, Rettberg C, Dunn M. Thromboxane A2 (TXA2) and endoperoxide analogs contract cultured rat glomerular mesangial cells. Kidney Int 1986; 29: 340.

    Google Scholar 

  68. Schalekamp MADH, Derkx FHM. Renal actions of angiotensin II in man: normal and abnormal. In: The renin-angiotensin system. Robertson JIS, Nicholls MG (eds). Pub Gower Medical Publishing, London, 1993. 271–279.

    Google Scholar 

  69. Kikeri D, Pennell J P, Hwang K H, Jacob A I, Richman A V, Bourgoignie JJ. Endotoxaemic acute renal failure in awake rats. Am J Physiol 1986; 250: F1098–106.

    PubMed  CAS  Google Scholar 

  70. Colman RW, Wong PY. Participation of Hageman factor dependent pathways in human disease states. Thromb Haemost 1977; 38: 751–75.

    PubMed  CAS  Google Scholar 

  71. Coalson JJ, Hinshaw LB, Guenter CA, Berrell EL, Greenfield LJ. Pathophysiologic responses of the subhuman primate in experimental septic shock. Lab Invest 1975; 32: 561–9.

    PubMed  CAS  Google Scholar 

  72. Coalson JJ, Benjamin B, Archer LT, Beller B, Gilliam CL, Taylor FB, Hinshaw LB. Prolonged shock in the baboon subjected to infusion of E. coliendotoxin. Circ Shock 1978; 5: 423–37.

    PubMed  CAS  Google Scholar 

  73. Colucci M, Zoja C, Remuzzi G, Semeraro N. Reduced fibrinolytic activity in glomeruli isolated from rabbits infused with tumour necrosis factor. Haemostasis 1993; 23: 173–8.

    PubMed  CAS  Google Scholar 

  74. Taylor FB Jr, Chang A, Ruf W, Morrissey JH, Hinshaw L, Catlett R, Blick K, Edgington TS. Lethal E. coliseptic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock 1991; 33: 127–34.

    PubMed  Google Scholar 

  75. Laszik Z, Nadasdy T, Johnson LD, Lerner MR, Brackett D, Silva FG. Renal interleukin-1 expression during endotoxemia and gram-negative septicemia in conscious rats. Circ Shock 1994; 43: 115–21.

    PubMed  CAS  Google Scholar 

  76. Hinshaw LB, Emerson TE Jr, Chang AC, Duerr M, Peer G, Fournel M. Study of septic shock in the nonhuman primate: relationship of pathophysiological response to therapy with anti-TNF antibody. Circ Shock 1994; 44: 221–9.

    PubMed  CAS  Google Scholar 

  77. Anderson BO, Bensard DD, Harken AH. The role of platelet activating factor and its antagonists in shock, sepsis and multiple organ failure. Surg Gynecol Obstet 1991; 172: 415–24.

    PubMed  CAS  Google Scholar 

  78. Richman AV, Gerber LI, Balis JU. Peritubular capillaries. A major target site of endotoxin-induced vascular injury in the primate kidney. Lab Invest 1980; 43: 327–32.

    PubMed  CAS  Google Scholar 

  79. Coalson J. Pathology of sepsis, septic shock and multiple organ failure. In: Sibbald WJ, Sprung CL (eds). Perspectives on sepsis and septic shock. Society of Critical Care Medicine, Fullerton Ca, 1986. 27–59.

    Google Scholar 

  80. Bihari D, Smithies M, Gimson A, Tinker J. The effects of vasodilation with prostacyclin on oxygen delivery and uptake in critically ill patients. N Engl J Med 1987; 317: 397–403.

    Article  PubMed  CAS  Google Scholar 

  81. Beaufils M, Morel-Maroger L, Sraer JD, Kaufer A, Kourilsky O, Richet G. Acute renal failure of glomerular origin during visceral abscesses. N Engl J Med 1976; 295: 185–9.

    Article  PubMed  CAS  Google Scholar 

  82. Zappacosta AR, Ashby BL. Gram-negative sepsis with acute renal failure. Occurrence from acute glomerulo-nephritis. JAMA 1977; 238: 1389–90.

    Article  PubMed  CAS  Google Scholar 

  83. Pusey CD, Rees AJ. Acute renal failure due to glomerulonephritis and vasculitis. In: Oxford Textbook of Clinical Nephrology. Cameron JS, Davison AM, Grunfcld J-P, Kerr D, Ritz E (eds). Oxford Medical Publications, Oxford, 1992, 1060–76.

    Google Scholar 

  84. Conlon PJ, Kovalik E, Schwab SJ. Percutaneous renal biopsy of ventilated intensive care unit patients. Clin Nephrol 1995; 43: 309–11.

    PubMed  CAS  Google Scholar 

  85. Paris AL, Herwaldt LA, Blum D, Schmid GP, Shands KN, Broome CV. Pathologic findings in twelve fatal cases of toxic shock syndrome. Ann Intern Med 1982; 96: 852–7.

    PubMed  CAS  Google Scholar 

  86. Gullichsen E. Renal perfusion and metabolism in experimental endotoxin shock. Acta Chir Scand 1991; (Supp); 560: 7–31.

    CAS  Google Scholar 

  87. Memoli B, Libetta C, Conte G, Andreucci VE. Loop diuretics and renal vasodilators in acute renal failure. Nephrol Dial Transplantat 1994; 9 (Suppl) 4: 168–71.

    Google Scholar 

  88. Kelleher SP, Robinette JB, Miller F, Conger JD. Effect of hemorrhagic reduction in blood pressure on recovery from acute renal failure. Kidney Int 1987; 31: 725–30.

    Article  PubMed  CAS  Google Scholar 

  89. Olsen S, Solez K. Acute renal failure in man: pathogenesis in light of new morphological data. Clin Nephrol 1987; 27: 271–7.

    PubMed  CAS  Google Scholar 

  90. Norman J, Tsau YK, Bacay A, Fine LG. Epidermal growth factor enhances recovery from ischaemic acute tubular necrosis in the rat: role of the epidermal growth factor receptor. Clin Sci 1990; 78: 445–50.

    PubMed  CAS  Google Scholar 

  91. Lin JJ, Fine RN, Kaskel FR. Effect of insulin-like growth factor-1 (IGF-1) on recovery from postischemic renal failure (ARF) in rats. J Am Soc Nephrol 1992; 30: 710.

    Google Scholar 

  92. Brezis M, Epstein FH. Cellular mechanisms of acute ischemic injury in the kidney. Ann Rev Med 1993; 44: 27–37.

    Article  PubMed  CAS  Google Scholar 

  93. Zager RA, Prior RB. Gentamicin and gram-negative bacteremia. A synergism for the development of experimental nephrotoxic acute renal failure. J Clin Invest 1986; 78: 196–204.

    Article  PubMed  CAS  Google Scholar 

  94. Palmer BF, Henrich WL. Clinical acute renal failure with non-steroidal anti-inflammatory drugs. Semin Nephrol 1995; 15 (3): 214–27.

    PubMed  CAS  Google Scholar 

  95. Patrono C, Dunn M. The clinical significance of inhibition of renal prostaglandin synthesis. Kidney Int 1987; 32: 1–12.

    Article  PubMed  CAS  Google Scholar 

  96. Kleinknecht D, Droz D. Acute renal failure from interstitial disease. In: Oxford Textbook of Clinical Nephrology. Cameron JS, Davison AM, Grunfeld J-P, Kerr D, Ritz E (eds). Oxford Medical Publications, Oxford, 1992, 1084–98.

    Google Scholar 

  97. Pm C, Kjellstrand C M. Urinary diagnostic indices and chemistries in the differential diagnosis of prerenal failure and acute tubular necrosis. Semin Nephrol 1985; 5: 224–33.

    Google Scholar 

  98. Cumming AD, Driedger AA, McDonald JW, Lindsay RM, Solez K, Linton AL. Vasoactive hormones in the renal response to systemic sepsis. Am J Kidney Dis 1988; 11: 23–32.

    PubMed  CAS  Google Scholar 

  99. Cumming AD, Kline R, Linton AL. Association between renal and sympathetic responses to nonhypotensive systemic sepsis. Crit Care Med 1988; 16: 1132–7.

    Article  PubMed  CAS  Google Scholar 

  100. Ratcliffe, PJ. Pathophysiology of acute renal failure. In: Oxford Textbook of Clinical Nephrology. Cameron JS, Davison AM, Grunfeld J-P, Kerr D, Ritz E (eds). Oxford Medical Publications, Oxford, 1992, 982–1005.

    Google Scholar 

  101. Isakson PC, Shofer F, McKnight RC, Feldhaus RA, Raz A, Needleman P. Prostaglandins and the reninangiotensin system in canine endotoxemia. J Pharmacol Experim Therap 1977; 200: 614–22.

    CAS  Google Scholar 

  102. Oettinger W, Peskar BA, Beger HG. Profiles of endogenous prostaglandin F2 alpha, thromboxane A2 and prostacyclin with regard to cardiovascular and organ functions in early septic shock in man. Eur Surg Res 1987; 19: 65–77.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goddard, J., Cumming, A.D. (1998). Renal alterations in the septic patient. In: Critical Care Nephrology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5482-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5482-6_42

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6306-7

  • Online ISBN: 978-94-011-5482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics