Skip to main content

Acid-base balance during renal replacement therapies

  • Chapter
Critical Care Nephrology
  • 42 Accesses

Abstract

The correction of metabolic acidosis in uremic patients is a primary indication for dialysis. In patients receiving renal replacement therapy, the restoration of metabolic acid-base balance, normally accomplished by the kidneys, is achieved by buffer administration through the dialysis membrane. Base gain during dialysis simulates the bicarbonate regeneration process by the normal kidneys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lennon EJ, Lemann J Jr, Litzow JR. The effects of diet and stool composition on the net external acid balance of normal subjects. J Clin Invest 1966; 45: 1601–7.

    Article  PubMed  CAS  Google Scholar 

  2. Fernandez PC, Cohen RM, Feldman GM. The concept of bicarbonate distribution space: the crucial role of body buffers. Kidney Int 1989; 36: 747–52.

    Article  PubMed  CAS  Google Scholar 

  3. Garella S, Dana CL, Chazan JA. Severity of metabolic acidosis as a determinant of bicarbonate requirements. N Engl J Med 1973; 289: 121–6.

    Article  PubMed  CAS  Google Scholar 

  4. Androgué HJ, Brensilver J, Cohen JJ, Madias NE. Influence of steady-state alterations in acid-base equilibrium on the fate of administered bicarbonate in the dog. J Clin Invest 1983; 71: 867–83.

    Article  Google Scholar 

  5. Pacitti A, Atti M, Alloatti A, et al. Computer modelled bicarbonate kinetic in acetate free biofiltration. In: Man NR, Botella J, Zucchelli P (eds). Blood purification in perspective: new insights and future trends Vol 2. Cleveland: Icaot press 1992: 191–7.

    Google Scholar 

  6. Gotch FA, Sargent JA, Keen ML. Hydrogen ion balance in dialysis therapy. Artif Organs 1982; 6: 388–95.

    Article  PubMed  CAS  Google Scholar 

  7. Sargent JA, Gotch FA. Bicarbonate and carbon dioxide transport during hemodialysis. Asaio J 1979; 2: 61–72.

    Google Scholar 

  8. Ward RA, Wathen RL. Utilization of bicarbonate for base repletion in hemodialysis. Artif Organs 1982; 6: 369–403.

    Article  Google Scholar 

  9. Christensen HN: General concepts of neutrality regulation Am J Surg 1962; 103: 286–91.

    Article  PubMed  CAS  Google Scholar 

  10. Feriani M, Bragantini L, Dell’Aquila R, et al. Buffer kinetics in biofiltration. Int J Artif Organs 1986; 9 (Suppl 3): S1–9.

    Google Scholar 

  11. Sprenger KBG, Kratz W, Lewis AE, Stadtmüller U. Kinetic modelling of hemodialysis, hemofiltration, and hemodiafiltration. Kidney Int 1983; 24: 143–9.

    Article  PubMed  CAS  Google Scholar 

  12. Colton CK, Henderson LW, Ford CA, Lysaght MJ. Kinetic of hemodiafiltration. I. In vitro transport characteristics of a hollow-fiber blood ultrafilter. J Lab Clin Med 1975; 85: 355–71.

    PubMed  CAS  Google Scholar 

  13. Henderson LW, Colton CK, Ford CA. Kinetics of hemodiafiltration. II. Clinical characterization of a blood cleansing modality. J Lab Clin Med 1975; 85: 372–94.

    PubMed  CAS  Google Scholar 

  14. Man NK, Fournier G, Thireau P, Gaillard JL, Funk-Brentano JL. Effect of bicarbonate-containing dialysate on chronic hemodialysis patients: A comparative study. Artif Organs 1982; 6: 421–6.

    Article  PubMed  CAS  Google Scholar 

  15. Nissenson AR. Prevention of dialysis-induced hypoxemia by bicarbonate dialysis. Trans Am Soc Artif Intern Organs 1980; 26: 339–43.

    PubMed  CAS  Google Scholar 

  16. Graefe U, Milutinovich J, Follette WC, Vizzo JE, Babb AL, Scribner BH. Less dialysis-induced morbidity and vascular instability with bicarbonate in dialysate. Ann Int Med 1978; 88: 332–6.

    PubMed  CAS  Google Scholar 

  17. Hakim RM, Pontzer MA, Tilton D, Lazarus JM, Gottlieb MN. Effects of acetate and bicarbonate dialysis in stable chronic dialysis patients. Kidney Int 1985; 28: 535–40.

    Article  PubMed  CAS  Google Scholar 

  18. Gennari FJ. Acid-base balance in dialysis patients. Kidney Int 1985; 28: 678–88.

    Article  PubMed  CAS  Google Scholar 

  19. Abu-Hamdan DK, Mahajan SK, Desai S, et al. Hypoxemia during bicarbonate dialysis. Am Soc Nephrol 1980; 13: 33 (Abstract).

    Google Scholar 

  20. Borges H, Fryd DS, Rosa AA, Kjellstrand CM. Hypo tension during acetate and bicarbonate dialysis in patients with acute renal failure. Am J Nephrol 1981; 1: 24–9.

    Article  PubMed  CAS  Google Scholar 

  21. Tolchin N, Roberts JL, Hayashi J, Lewis EJ. Metabolic consequences of high mass-transfer hemodialysis. Kidney Int 1977; 11: 366–78.

    Article  PubMed  CAS  Google Scholar 

  22. Eiser AR, Jayammane D, Kokseng C, Che H, Slifkin RF, Neff MS. Contrasting alterations in pulmonary gas exchange during acetate and bicarbonate hemodialysis. Am J Nephrol 1982; 2: 123–8.

    Article  PubMed  CAS  Google Scholar 

  23. Iseki K, Onoyama K, Maeda T, et al. Comparison of hemodynamics induced by conventional acetate hemodialysis, bicarbonate hemodialysis and ultrafiltration. Clin Nephrol 1980; 14: 294–301.

    PubMed  CAS  Google Scholar 

  24. Mitchell J, Wildenthal K, Johnson R. The effects of acid-base disturbances on cardiovascular and pulmonary function. Kidney Int 1972; 1: 375–80.

    Article  PubMed  CAS  Google Scholar 

  25. Ruder MA, Alpert MA, Van Stone J. et al. Comparative effects of acetate and bicarbonate hemodialysis on left ventricular function. Kidney Int 1985; 27: 768–73.

    Article  PubMed  CAS  Google Scholar 

  26. Henrich W, Hunt J, Nixon J. Increased ionized calcium and left ventricular contractility during hemodialysis. N Engl J Med 1983; 310: 19–21.

    Article  Google Scholar 

  27. Mansell MA, Morgan SH, Moore R, Kong KH, Laker MF, Wing AJ. Cardiovascular and acid-base effects of acetate and bicarbonate hemodialysis. Nephrol Dial Transplant 1987; 1: 229–32.

    PubMed  CAS  Google Scholar 

  28. Velez RL, Woodard TD, Henrich WL. Acetate and bicarbonate hemodialysis in patients with and without autonomic dysfunction. Kidney Int 1984; 26: 59–64.

    Article  PubMed  CAS  Google Scholar 

  29. Henrich WL, Woodard TD, Meyer BD, Chappell TR, Rubin U: High sodium bicarbonate and acetate hemodialysis: Double-blind crossover comparison of hemodynamic and ventilatory effects. Kidney Int 1983; 24: 240–5.

    Article  PubMed  CAS  Google Scholar 

  30. Morin RJ, Srikanraiah MV, Woodley Z, Davidson WD. Effect of acetate vs bicarbonate on plasma lipid and lipoprotein levels in uremic patients. J Dial 1980; 4: 9–14.

    PubMed  CAS  Google Scholar 

  31. Bosch JP, Lauer A. Acid-base balance in hemofiltration. In: Henderson LW, Quellhorst EA, Baldamus CA, Lysaght MJ (eds). Hemofiltration. Berlin: Springer Verlag, 1986: 147–54.

    Google Scholar 

  32. Schaefer K, Ryzlewicz T, Sandri M, von Bernewitz S, von Herrath D. Effect of hemofiltration on acid-base status and ventilation. Contr Nephrol 1982; 32: 69–78.

    CAS  Google Scholar 

  33. Davenport A, Will EJ, Davison AM. The effects of lactate-buffered solutions on the acid-base status of patients with renal failure. Nephrol Dial Transplant 1989; 4: 800–4.

    PubMed  CAS  Google Scholar 

  34. Feriani M, Biasioli S, Fabris A, et al. Calcium and bicarbonate containing solutions for peritoneal dialysis and hemofiltration. In: Nosè Y, Kjellstrand C, Ivanovich P (eds). Progress in Artificial Organs. Cleveland: ISAO Press, 1986: 277–81.

    Google Scholar 

  35. Santoro A, Ferrari G, Bolzani R, Spongano M, Zucchelli P. Int J Artif Organs 1994; 17: 27–36

    PubMed  CAS  Google Scholar 

  36. Leber HW, Wizemann V, Goubeand G, Rawer P, Schütterle G. Simultaneous hemofiltration/hemodialysis: an effective alternative to hemofiltration and conventional hemodialysis in the treatment of uremic patients. Clin Nephrol 1978; 9: 115–21.

    PubMed  CAS  Google Scholar 

  37. Scheider H, Liornin E, Streicher E. Haemodinamic studies of diffusive and convective procedures using a polysulphone membrane. Contrib Nephrol 1985; 46: 134–48.

    Google Scholar 

  38. Feriani M, Biasioli S, Bragantini L, et al. Buffer balance in bicarbonate hemodiafiltration. Trans Am Soc Artif Intern Organs 1986; 32: 422–6.

    Article  CAS  Google Scholar 

  39. Arisi L, Calderini C, David S, Manari A, Mancuso S, Cambi V. Acid base balance in hypertonic hemodiafiltration. In: Petrella E (ed). Uremic Acidosis. Milano: Wichtig editore 1983: 71–83.

    Google Scholar 

  40. Biasioli S, Feriani M, Chiaramonte S, et al. Different buffers for hemodiafiltration: a controlled study. Int J Artif Organs 1989; 12: 25–30.

    PubMed  CAS  Google Scholar 

  41. Feriani M, Ronco C, Biasioli S, Bragantini L, La Greca G. Effect of dialysate and substitution fluid buffer on buffer flux in hemodiafiltration. Kidney Int 1990; 39: 711–7.

    Article  Google Scholar 

  42. Ronco C. Continuous renal replacement therapies for the treatment of acute renal failure in intensive care patients. Clin Nephrol 1993; 40: 187–198.

    PubMed  CAS  Google Scholar 

  43. Raimondi F, Bianchi T, Emmi V. Use of continuous arteriovenous hemofiltration (CAVH) in lactic acidosis: a case report. In: La Greca G, Fabris A, Ronco C (eds). CAVH. Milano: Wichtig Editore 1986: 135–40.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Feriani, M. (1998). Acid-base balance during renal replacement therapies. In: Critical Care Nephrology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5482-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5482-6_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6306-7

  • Online ISBN: 978-94-011-5482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics