Skip to main content

Biochemical and biophysical principles of hydrogen ion regulation

  • Chapter
Critical Care Nephrology

Abstract

Acid-base balance is as fundamental an aspect of homeostasis as oxygenation or blood pressure. Large living organisms seek to maintain plasma pH within strict tolerance limits. In fact, hydrogen ion (H+) concentration is maintained within the nmol/1 range (36–43 nmol/1). By contrast, other ions are regulated in the mmol/1 range. In the next few sections we will consider the issue of what determines H+ concentration in some detail. Our goal will be to consider the biochemical and biophysical principles of H+ regulation and to apply these concepts to clinical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trivedi B, Danforth WH. Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol 1966; 241: 4110–2.

    CAS  Google Scholar 

  2. Fencl V, Leith DE. Stewart’s quantitative acid-base chemistry: Applications in biology and medicine. Resp Physiol 1993; 91: 1–16.

    Article  CAS  Google Scholar 

  3. Stewart PA. How to understand acid-base. In: Stewart PA (ed). A quantitative acid-base primer for biology and medicine. New York: Elsevier, 1981: 1–286.

    Google Scholar 

  4. Schlichtig R. [base excess] vs [strong ion difference]: which is more helpful? In: Nemoto EM, La Manna JC (eds). Oxygen Transport to Tissue XVIII. Plenum Publishing New York 1997. pp 91–96.

    Google Scholar 

  5. Lindinger MI, Heigenhauser GJF, McKelvie RS, Jones NL. Blood ion regulation during repeated maximal exercise and recovery in humans. Am J Physiol 1992; 262: R126–36.

    PubMed  CAS  Google Scholar 

  6. Rozenfeld RA, Dishart MK, Tonnessen TI, Schlichtig R. Methods for detecting local intestinal ischemic anaerobic metaboilc acidosis by PCO2. J Appl Physiol 1996; 81: 1834–42.

    PubMed  CAS  Google Scholar 

  7. Kellum JA, Kramer DJ, Pinsky MR. Strong ion gap: A methodology for exploring unexplained anions. J Crit Care 1995; 10: 51–5.

    Article  PubMed  CAS  Google Scholar 

  8. Anderson JW Jennings DB. H+ homeostasis, osmolarity, and body temperature during controlled NaCl and H2O intake. Am J Physiol 1988; 255: R97–105.

    PubMed  Google Scholar 

  9. Stewart PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 1983; 61: 1444–61.

    Article  PubMed  CAS  Google Scholar 

  10. Gilfix BM, Bique M, and Magder S. A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care 1993; 8 (4): 187–197.

    Article  PubMed  CAS  Google Scholar 

  11. Shires GT, Tolman J: Dilutional acidosis. Ann Intern Med 1948; 28: 557–9.

    PubMed  CAS  Google Scholar 

  12. Cheek DB. Changes in total chloride and acid-base balance in gastroenteritis following treatment with large and small loads of sodium chloride. Pediatrics 1956; 17: 839–47.

    PubMed  CAS  Google Scholar 

  13. Figge J, Rossing TH, Fend V. The role of serum proteins in acid-base equilibria. J Lab Clin Med 1991; 117: 453–67.

    PubMed  CAS  Google Scholar 

  14. Figge J, Mydosh T, Fencl V. Serum proteins and acid-base equilibria: a follow-up. J Clin Lab Med 1992; 120: 713–9.

    CAS  Google Scholar 

  15. Kellum JA, Kramer DJ, Pinksy MR. Closing the gap: A simple method of improving the accuracy of the anion gap. Chest 1996 110: 18S (abstract).

    Google Scholar 

  16. Grinstein S, Rotin D, Mason MJ. Na+/H+ exchange and growth factor-induced cytosolic pH changes: role in cellular proliferation. Biochem Biophys Acta 1989; 988: 73–9.

    Article  PubMed  CAS  Google Scholar 

  17. Tonnenssen TI, Aas AT, Sandvig K, Olsnes S. Effect of anti-inflammatory analgesic drugs on the regulation of cytosolic pH by anion antiport. J Pharmacol Exp Ther 1989; 248: 1197–206.

    Google Scholar 

  18. Putman RW. Effect of insulin on intracellular pH in frog skeletal muscle fibers. Am J Physiol 1985; 248: C3306.

    Google Scholar 

  19. Tonnenssen TI. Intracellular pH and electrolyte regulation. In: Ayres SM, Grenvik A, Holbrook PR, Shoemaker WC. Textbook of Critical Care. Philadelphia: W.B. Saunders Company, 1995: 172–87.

    Google Scholar 

  20. Stone DK, Xie XS. Proton translocating ATPases: issues in structure and function. Kidney Int 1988; 33: 767–74.

    Article  PubMed  CAS  Google Scholar 

  21. Levine DZ, Jacobson HR. The regulation of renal acid excretion: new observations from studies of distal nephron segments. Kidney Int 1986; 29: 1099–109.

    Article  PubMed  CAS  Google Scholar 

  22. Jacobson HR, Furuya H, Breyer MD. Mechanism and regulation of proton transport in the outer medullary collecting duct. Kidney Int 1991; 40 (Suppl 33): S51–6.

    Google Scholar 

  23. Garg LC. Respective roles of H-ATPase and H-KATPase in ion transport in the kidney. J Am Soc Nephrol 1991; 2: 949–60.

    PubMed  CAS  Google Scholar 

  24. Boron WF, Boulpaep EL. Intracellular pH regulation in the renal proximal tubule of the salammander. Na-H exchange. J Gen Physiol 1983; 81: 29–52.

    Article  PubMed  CAS  Google Scholar 

  25. Soleimani M, Grassi SM, Aronson PS. Stoichiometry of Na+/HCO3 cotransport in basolateral membrane vesicles isolated from rabbit renal cortex. J Clin Invest 1987; 79: 1276–80.

    Article  PubMed  CAS  Google Scholar 

  26. Rector FC Jr. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am J Physiol 1983; 244: F461–71.

    PubMed  Google Scholar 

  27. Preisig PA, Ives HE, Cragoe EJ Jr, Alpern RJ, Rector FC Jr. Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. J Clin Invest 1987; 80: 970–8.

    Article  PubMed  CAS  Google Scholar 

  28. Kurtz I. Basolateral membrane Na+/H+ antiport, Na+/ base cotransport, and Na+-independent Cl /base exchange in the rabbit S3 proximal tubule. J Clin Invest 1989; 83: 616–22.

    Article  PubMed  CAS  Google Scholar 

  29. Boron WF, Boulpaep EL. The electrogenic Na/HCO, cotransporter. Kidney Int 1989; 36: 392–402.

    Article  PubMed  CAS  Google Scholar 

  30. Boyarsky G, Ganz MB, Sterzel B, Boron WF. pH regulation in single glomerular mesangial cells. I. Acid extrusion in absence and presence of HCO3. Am J Physiol 1988; 255: C844–56.

    PubMed  CAS  Google Scholar 

  31. Boyarsky G, Ganz MB, Sterzel B, Boron WF. pH regulation in single glomerular mesangial cells. II Na-dependent and -independent Cl- HCO, exchangers. Am J Physiol 1988; 255: C857–69.

    PubMed  CAS  Google Scholar 

  32. L’Allemain G, Paris S, Pouyssegur J. Role of a Na+-dependent Cl-/HCO3 exchange in regulation of intracellular ppH in fibroblasts. J Biol Chem 1985; 260: 4877–83.

    PubMed  Google Scholar 

  33. Russell JM, Boron WF. Role of chloride transport in regulation of intracellular pH. Nature 1976; 264: 73–4.

    Article  PubMed  CAS  Google Scholar 

  34. Wright EM. Transport of carboxylic acids by renal membrane vesicles. Ann Rev Physiol 1985; 47: 127–41.

    Article  CAS  Google Scholar 

  35. Bourke E, Häussinger D. pH homeostasis: the conceptual change. In: Berlyne GM (ed). The kidney today. Selected topics in renal science. Contrib Nephrol. Basel: Karger, 1992: 58–88.

    Google Scholar 

  36. Moore EW. The alkaline tide. Gastroenterology 1967; 52: 1052–4.

    PubMed  CAS  Google Scholar 

  37. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR. Splanchnic buffering of metabolic acid during early endotoxemia. J Crit Care 1997; 12: 7–12.

    Article  PubMed  CAS  Google Scholar 

  38. McAuliffe JJ, Lind LJ, Leith DE, Fencl V. Hypoproteinemic alkalosis. Am J Med 1986; 81: 86–90.

    Article  PubMed  CAS  Google Scholar 

  39. Mecher, C., Rackow EC, Astiz ME, and Weil MH. Anaccounted for anion in metabolic acidosis during severe sepsis in humans. Crit Care Med 1991; 19: 705–11.

    Article  PubMed  CAS  Google Scholar 

  40. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR. Hepatic anion flux during acute endotoxemia. J Appl Physiol 1995; 78: 2212–7.

    PubMed  CAS  Google Scholar 

  41. Boron WF. Control of intracellular pH. in: Seldin DW, Giebisch G (eds). The Kidney: Physiology and Pathophysiology. New York: Raven Press, 1992: 219–63.

    Google Scholar 

  42. Roos A, Boron WF. Intracellular pH. Physiol Rev 1981; 61: 296–434.

    PubMed  CAS  Google Scholar 

  43. Rudnick G. ATP-driven H pumping into intracellular organelles. Annu Rev Physiol 1986; 48: 403–13.

    Article  PubMed  CAS  Google Scholar 

  44. Nomura K, Nakamura Y. Determination of the intravesicular pH of fragmented sarcoplasmic reticulum with 5,5-dimethyl-2,4 oxazolidinedione. J Biochem 1976; 80: 1393–9.

    PubMed  CAS  Google Scholar 

  45. Ohkuma S, Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 1978; 75: 3327–31.

    Article  PubMed  CAS  Google Scholar 

  46. Schullman RG, Brown TR, Ugurbil K, Ogawa S, Cohen SM, den Hollander JA. Cellular applications of 31P and 13C nuclear magnetic resonance. Science 1979; 205: 160–6.

    Article  Google Scholar 

  47. Meech RW, Thomas RC. Effect of measured calcium chloride injections on the membrane potential and internal potential and internal pH of snail neurones. J Physiol 1980; 298: 111–29.

    PubMed  CAS  Google Scholar 

  48. Thomas RC. Intracellular pH of snail neurones measured with a new pH-sensitive glass microelectrode. J Physiol 1974; 238: 159–80.

    PubMed  CAS  Google Scholar 

  49. Schlichtig R. Base excess: a powerful clinical tool in the ICU. Critical Care Symposium. Society of Critical Care Medicine 1996; 1: 1–30.

    Google Scholar 

  50. Siggaard-Anderson O. The acid-base status of the blood, 4th Ed. Williams & Wilkins, Baltimore and Munksgaard, Copenhagen 1974.

    Google Scholar 

  51. Sigaard-Anderson O. The Van Slyke equation. Scand J Clin Lab Invest 1977; 37 (Suppl 146): 15–20.

    Article  Google Scholar 

  52. Sadjadi SA. A new range for the anion gap. Ann Intern Med 1995; 123: 807.

    PubMed  CAS  Google Scholar 

  53. Winter SD, Pearson R, Gabow PG, Schultz, Lepoff RB. The fall of the serum anion gap. Arch Intern Med 1990; 150: 311–3.

    Article  PubMed  CAS  Google Scholar 

  54. Lolekha PH, Lolekha S. Value of the anion gap in clinical diagnosis and laboratory evaluation. Clin Chem 1983; 29: 279–83.

    PubMed  CAS  Google Scholar 

  55. Iberti TJ, Leibowitz AB, Papadakos PJ, et al. Low sensitivity of the anion gap as a screen to detect hyperlactatemia in critically ill patients. Crit Care Med 1990; 18: 275–7.

    Article  PubMed  CAS  Google Scholar 

  56. Gabow PA. Disorders associated with an altered anion gap. Kidney Int 1985; 27: 472–83.

    Article  PubMed  CAS  Google Scholar 

  57. Salem MM, Mujais SK. Gaps in the anion gap. Arch Intern Med 1992; 152: 1625–9.

    Article  PubMed  CAS  Google Scholar 

  58. Oster JR, Perez GO, Materson BJ. Use of the anion gap in clinical medicine. South Med J 1988; 81: 229–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leblanc, M., Kellum, J.A. (1998). Biochemical and biophysical principles of hydrogen ion regulation. In: Critical Care Nephrology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5482-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5482-6_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6306-7

  • Online ISBN: 978-94-011-5482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics