Skip to main content

Hyper- and hypokalemia in critical patients

  • Chapter
  • 48 Accesses

Abstract

The potassium (K+) body pool (50 mEq/kg) is distributed in total body water as positive monovalent ion; as the cell and the endothelial membranes, separating the water compartments of the body, are freely permeable to such ions, K+ fluxes across the membrane according to concentration and to electrical gradient. Extracellular and intracellular water (We and Wi) respectively contain 2% and 98% of the total K+ pool [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brennan LB, Yasumura S, Letteri JM, Cohn SH. Total body electrolyte composition and distribution of body water in uremia. Kidney Int 1980; 17: 364–71.

    Article  PubMed  CAS  Google Scholar 

  2. Skou JC. Enzymatic basis for active transport K+ across cell membrane. Physiol Rev 1965; 45: 596–617.

    PubMed  CAS  Google Scholar 

  3. Hodgkin AL, Huxley AF and Katz B. Ionic current underlying activity in the giant axon of the squid. Arch Sci Physiol 1949; 3: 129–50.

    CAS  Google Scholar 

  4. Poole-Wilson PA, Cameron IR. Intracellular pH and K+ of cardiac and skeletal muscle in acidosis and alkalosis. Am J Physiol 1975; 229: 1305.

    PubMed  CAS  Google Scholar 

  5. Maffly RH. The body fluids: volume, composition and physical chemistry. In: Brenner BM and Rector FC (eds). The Kidney. Philadelphia: Saunders WB, 1981: 76–115.

    Google Scholar 

  6. Bygrave FL. The ionic environment and metabolic control. Nature 1967; 214: 667.

    Article  PubMed  CAS  Google Scholar 

  7. Lubin M. Cell potassium and the regulation of protein syntesis. In: Hoffman JF (ed). The cellular function of membrane transport. Prentice-Hall, Englewood Cliffs, NJ 1964; 193.

    Google Scholar 

  8. Mandel LJ and Balahan RS. Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am J Physiol 1981; 240: F357–71.

    PubMed  CAS  Google Scholar 

  9. Crabbe J, Francois B. Stimulation par l’insuline du transport actif de sodium à travers les membranes epitheliales du crapaud, Bufo marinus. Ann Endocrinol 1967; 28: 713–5.

    Google Scholar 

  10. Levitt MF, Bader ME. Effect of cortisone and ACTH on fluid and electrolyte distribution in man. Am J Med 1951; 11: 715–23.

    Article  PubMed  CAS  Google Scholar 

  11. Kjeldsen K, Norgaard A, Gotsche CO, Thomessen A, Cosen T. Effect of thyroid function on number of Na-K pumps in human skeletal muscle. Lancet 1984; ii: 8–10.

    Article  Google Scholar 

  12. Crabbe J, Thorn GW. Effect of aldosterone on renal function in normal males. Rev Fr Etud Clin Biol 1964; 9: 729.

    PubMed  CAS  Google Scholar 

  13. Burnell JM, Villamil MF, Uyeno BT, Schriber BH. Effect in humans of extracellular pH change in relationship between serum potassium concentration and intracellular potassium. J Clin Invest 1956; 35: 935–9.

    Article  PubMed  CAS  Google Scholar 

  14. Elkinton JR, Singer RB, Barker ES et al. Effects in man of acute experimental respiratory alkalosis and acidosis on ionic transfers in the total body fluids. J Clin Invest 1955; 34: 1671.

    Article  PubMed  CAS  Google Scholar 

  15. Geibisch G, Berger L, Pitts RF. The extrarenal response to acute acid-base disturbances of respiratory origin. J Clin Invest 1955; 34: 231.

    Article  Google Scholar 

  16. Simmons DH, Avedon M. Acid base alterations and plasma potassium concentration. Am J Physiol 1959; 197: 319–26.

    PubMed  CAS  Google Scholar 

  17. Cohen RD, Woods HF. Clinical and biochemical aspects of lactic acidosis. Oxford: Blackwell, 1976: 60.

    Google Scholar 

  18. Cohen RD, Iles RA. Lactate acidosis: some physiological and clinical considerations. Clin Sci Mol Med 1977; 53: 405–10.

    PubMed  CAS  Google Scholar 

  19. Cooperman MT, Davidoff F, Spark R, Pallotta J. Clinical studies of alcoholic ketoacidosis. Diabetes 1974; 23: 433–9.

    PubMed  CAS  Google Scholar 

  20. Levy LJ, Duga J, Girgis M, Gordon EE. Ketoacidosis associated with alcoholism in nondiabetic subjects. Ann Intern Med 1973; 78: 213–19.

    PubMed  CAS  Google Scholar 

  21. Darrow DC and Yannet H. The changes in the distribution of body water accompanying increase and decrease in extracellular electrolyte. Clin Invest 1935; 14: 266–75.

    Article  CAS  Google Scholar 

  22. Dellasega M and Grantham JJ. Regulation of renal tubule cell volume in hypotonic media. Am J Physiol 1973; 224: 1128–94.

    Google Scholar 

  23. Fordtran JS: Speculations on the pathogenesis of diarrhea. Fed Proc 1967; 26: 1405.

    PubMed  CAS  Google Scholar 

  24. Smith JD, Perazzella MA, De Fronzo RA. Disorders of potassium metabolism. In: Arieff AI and De Fronzo RA (eds). Fluid and electrolite and acid-base desorders. New York, Edinburgh, London, Melbourne, Tokyo: Churchill Livingstone, 1995: 387–426.

    Google Scholar 

  25. Stanton BA, Giebisch GH. Mechanism of urinary potassium excretion. Miner Electrolyte Metab 1981; 5: 100.

    CAS  Google Scholar 

  26. De Fronzo RA, Birkhead G, Bia M. Effect of epinephrine on potassium homeostasis in man. Kidney Int 1979; 16: 917.

    Google Scholar 

  27. Black D, Milne MD. Experimental potassium depletion in man. Clin Sci 1952; II: 397–415.

    Google Scholar 

  28. Squires RD, Huth EJ. Experimental potassium depletion in normal subjects, I: relation of ionic intakes to the renal conservation of potassium. J Clin Invest 1959; 38: 1134–1148.

    Article  PubMed  CAS  Google Scholar 

  29. Cuthberston DP. Observations on the disturbance of metabolism produced by injury to the limbs. Q J Med 1932; 1: 233–46.

    Google Scholar 

  30. Shoemaker WC. The action of epinephrine and other hormones associated with the stress response on potassium movements with special reference to the development of postoperative depletion states. Rev Surg 1968; 25: 9–24.

    PubMed  CAS  Google Scholar 

  31. Anderson D, Shoemaker WC. Effect of hemorrhage on hepatic potassium movements. Proc Soc Exp Biol Med 1967; 124: 840–4.

    Google Scholar 

  32. Epstein FH. Signs and symptoms of electrolyte disorders. In: Maxwell MH, Kleeman CR (eds). Clinical Disorders of Fluid and Electrolyte Metabolism. Mc Graw-Hill, New York, 1980; 145.

    Google Scholar 

  33. Cuthbertson DP. Post-shock metabolic response. Lancet i: 433–7.

    Google Scholar 

  34. Bratusch-Marrain P, De Fronzo RA. Impairment of insulin-mediated glucose metabolism by hyperosmolality in man. Diabetes 1990; 32: 1028.

    Article  Google Scholar 

  35. Pouce S, Jennings A, Madias N, Harrington J. Drug-induced hyperkalemia. Medicine (Baltimore) 1986; 64: 357–70.

    Google Scholar 

  36. Bastow MD, Rawlings J and Allison SP. Benefits of supplementary tube feeding after fractured neck of femur: a randomized controlled trial. Br Med J 1983; 287: 1589–1992.

    Article  CAS  Google Scholar 

  37. Knochel JP. Potassium gradients and neuromuscolar excitability. The Kidney: physiology and pathophysiology. Ed Seldin DW and Giebisch G. Raven Press, New York 1985; 1207–21.

    Google Scholar 

  38. Fisch C. Electrolyte and the Heart. In: Hurst JW (ed). The heart. Mc Graw-Hill, New York 1982; 1599.

    Google Scholar 

  39. De Fronzo RA, Their SO. Fluid and electrolyte disturbances: hypo-and hyperkalemia. In: Martinez-Maldonado M (ed). Handbook of renal therapeutics. Plenum, New York, 1983; 25.

    Chapter  Google Scholar 

  40. Hadoly FJ, Scott JB, Florio MA. Local vascular effects of hyperkalemia, alkalosis, hypercalcemia and hypomagnesemia. Am J Physiol 1963; 204: 202.

    Google Scholar 

  41. Schuster MM. Megacolon in adults. In: Sleisenger MH and Fordtran JS (eds). Gastrintestinal disease. 2nd Ed WB Sanders, Philadelphia, 1978; 1812.

    Google Scholar 

  42. Cohen JJ, Gennari FJ, Harrington JT. Disorders of potassium balance. In: Brenner BM, Rector RC Jr (eds). The Kidney, 2nd Ed WB Sanders, Philadelphia, 1981; 908.

    Google Scholar 

  43. De Fronzo RA, Smith JD. Disorders of potassium metabolism. In: Fluid, electrolyte and acid-base dis-orders. Arieff AI, De Fronzo RA (eds). 2nd Ed Chur-chill Livingston, New York, Edinburgh, London, Melboume, Tokyo, 1995; 363–6.

    Google Scholar 

  44. Giebisch GN, Thier SO. Potassium: physiological and clinical importance. In: Siegel L (ed). Directions in cardiovascular medicine. Noechst-Russel Pharmaceuticals, Sommerville NJ, 1977; 48.

    Google Scholar 

  45. Sterns RH, Cox M, Feig PV et al. Internal potassium balance and control of the plasma potassium concentration. Medicine (Baltimore) 1981; 60: 339.

    Article  CAS  Google Scholar 

  46. Kruse JA, Carlson RW. Rapid correction of hypokalemia using concentrated intravenous potassium chloride infusions. Arch Intern Med 1990; 150: 613.

    Article  PubMed  CAS  Google Scholar 

  47. Cotton JR, Woodard T, Carter NW and Knochel JP. Resting skeletal muscle membrane potential as an index of uremic toxicity. J Clin Invest 1979; 63: 501–6.

    Article  PubMed  CAS  Google Scholar 

  48. Aparicio M, Vincendan P, Combe C, Caix J et al. Improvement of leucocytic Na+ K+ pumps activity in uremic patients on low protein diet. Kidney Int 1991; vol 40: 238–42.

    Article  PubMed  CAS  Google Scholar 

  49. Hamburger J, Richet G, Crosnier J, Funck-Brentano JL et al. Nephrologie. Editions Médicales Flammarion Paris 1966: 447.

    Google Scholar 

  50. Redaelli B, Sforzini S, Bonoldi G et al. Potassium removal as a factor limiting the correction of acidosis during haemodialysis. Proc Eur Dial Transplant Ass Madrid 1982; 19: 366–71.

    Google Scholar 

  51. Gruppo emodialisi e patologie cardiovascolari. Multicentre cross-sectional study of ventricular arrhythmias in chronically haemodialysed patients. Lancet 1988; August 6: 305–9.

    Google Scholar 

  52. Redaelli B, Locatelli F, Limido D et al. Effect of a new model of hemodialysis potassium removal on the control of ventricular arrhythmias. Kidney Int 1996; 50: 609–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Redaelli, B., Bonoldi, G. (1998). Hyper- and hypokalemia in critical patients. In: Critical Care Nephrology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5482-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5482-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6306-7

  • Online ISBN: 978-94-011-5482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics