Skip to main content

Imaging Magnetic Structures in the Transmission Electron Microscope

  • Chapter
  • 1161 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 338))

Abstract

The modern transmission electron microscope (TEM) is a powerful tool for the study of a wide range of magnetic materials currently under development. The primary motivation for its use is that many applicable magnetic properties are extrinsic rather than intrinsic to the materials themselves. Hence a detailed knowledge of both the physical and magnetic microstructure is essential if the structure-property relation is to be understood and materials with optimised properties produced. Many of the materials of interest are markedly inhomogeneous with features requiring resolution on a sub-50nm scale for their detailed investigation. Hence the attraction of TEM is two-fold. It offers very high spatial resolution and, because of the large number of interactions that take place when a beam of fast electrons hits a thin solid specimen, detailed insight into compositional, electronic, as well as structural and magnetic, properties. The resolution that is achievable depends largely on the information sought and may well be limited by the specimen itself. Typical resolutions achievable for structural imaging are 0.2–1.0nm, for extraction of compositional information l–3nm and for magnetic imaging 2–20nm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reimer, L. (1984) Transmission Electron Microscopy: The Physics of Image Formation and Microanalysis, Springer Series in Optical Sciences vol. 36, Springer-Verlag, Berlin.

    Google Scholar 

  2. McFadyen, I.R. and Chapman, J.N. (1992) Electron microscopy of magnetic materials, EMS A Bulletin, 22, 64–75.

    Google Scholar 

  3. Observation of magnetic domains in magnetic recording materials, Hitachi Technical Data EM Sheet No 47.

    Google Scholar 

  4. Tsuno, K. and Taoka, T. (1983) Magnetic-field-free objective lens around a specimen for observing fine structure of ferromagnetic materials in a transmission electron microscope, Jap. J. Appl Phys., 22, 1041–1047.

    Article  ADS  Google Scholar 

  5. Tsuno, K. and Inoue, M. (1984) Double gap objective lens for observing magnetic domains by means of differential phase contrast electron microscopy, Optik, 67, 363–376.

    Google Scholar 

  6. Chapman, J.N., Ferrier, R.P., Heyderman, L.J., McVitie, S., Nicholson, W.A.P., and Bormans, B. (1993) Micromagnetics, microstructure and microscopy, Electron Microscopy and Analysis (ed. A.J. Craven, IOPP, Bristol), 1–8.

    Google Scholar 

  7. Chapman, J.N., Johnston, A.B., Heyderman, L.J., McVitie, S., Nicholson, W.A.P., Bormans, B. (1994) Coherent magnetic imaging by TEM, IEEE Trans. Mag. 30, 4479–4484.

    Article  ADS  Google Scholar 

  8. Hale, M.E., Fuller, H.W. and Rubenstein, H. (1959) Magnetic domain observations by electron microscopy, J. Appl. Phys. 30, 789–91.

    Article  ADS  Google Scholar 

  9. Ploessl, R., Chapman, J.N., Scheinfein, M.R., Blue, J.L., Mansuripur, M. and Hoffmann, H. (1993) Micromagnetic structure of domains in Co/Pt multilayers. I Investigations of wall structure, J. Appl. Phys. 74, 7431–7437.

    Article  ADS  Google Scholar 

  10. Aharanov, Y. and Bohm, D., (1959) Significance of electromagnetic potentials in quantum theory, Phys. Rev. 115, 485–91.

    Article  MathSciNet  ADS  Google Scholar 

  11. Chapman, J.N. (1984) The investigation of magnetic domain structures in thin foils by electron microscopy, J.Phys. D: Appl.Phys. 17, 623–647.

    Article  ADS  Google Scholar 

  12. Chapman, J.N. and Kirk, K.J. - these proceedings.

    Google Scholar 

  13. Chapman, J.N., Morrison, G.R., Jakubovics, J.P. and Taylor, R.A. (1984) Investigations of micromagnetic structures by STEM, Electron Microscopy and Analysis 1983 (ed. P. Doig, IOP Conf. Ser. no. 68), 197–200.

    Google Scholar 

  14. Dekkers, N.H. and de Lang, H. (1974) Differential phase contrast in a STEM, Optik 41, 452–456.

    Google Scholar 

  15. Rose, H. (1977) Nonstandard imaging methods in electron microscopy, Ultramicroscopy, 2, 251–267.

    Article  Google Scholar 

  16. Morrison, G.R., Gong, H., Chapman, J.N. and Hrnciar, V. (1988) The measurement of narrow domain-wall widths in SmCo using differential phase contrast electron microscopy, J. Appl. Phys. 64, 1338–1342.

    Article  ADS  Google Scholar 

  17. Morrison, G.R. and Chapman, J.N. (1983) A comparison of three differential phase contrast systems suitable for use in STEM, Optik 64, 1–12.

    Google Scholar 

  18. Chapman, J.N., McFadyen, I.R. and McVitie, S. (1990) Modified differential phase contrast Lorentz microscopy for improved imaging of magnetic structures, IEEE Trans. Magn. 26, 1506–1511.

    Article  ADS  Google Scholar 

  19. Mankos, M., Scheinfein, M.R. and Cowley, J.M. (1994) Absolute magnetometry at nanometer transverse spatial resolution: Holography of thin cobalt films in a scanning transmission electron microscopy, J. Appl. Phys. 75, 7418–7424.

    Article  ADS  Google Scholar 

  20. Yajima, Y., Ichikawa, M. and Kuroda, K. (1995) Analysis of magnetic induction distribution, IEEE Trans. Magn. 31, 3367–3369.

    Article  ADS  Google Scholar 

  21. Tonomura, A. (1987) Applications of electron holography, Rev. Mod. Phys. 59, 639-669.

    Article  ADS  Google Scholar 

  22. Chapman, J.N., Johnston, A.B. and Heyderman, L.J. (1994) Coherent Foucault imaging — a method for imaging magnetic domain structures in thin films, J. Appl. Phys. 76, 5349–5355.

    Article  ADS  Google Scholar 

  23. Johnston, A.B. and Chapman, J.N. (1995) The development of coherent Foucault imaging to investigate magnetic microstructure, J. Microsc. 179, 119–128.

    Article  Google Scholar 

  24. Schmidt, F., Rave, W., Hubert, A. (1985) Enhancement of magneto-optical observation by digital image processing, IEEE Trans. Mag. 21, 1596–1598.

    Article  ADS  Google Scholar 

  25. Schäfer, R. (1995) Magnetooptical microscopy for the analysis of magnetic microstructures, Proc. 4th Symp. on Magnetic Materials, Processes and Devices - in press.

    Google Scholar 

  26. Betzig, E. and Trautman, J.K. (1992) Near field optics: microscopy, spectroscopy, and surface modulation beyond the diffractionl limit, Science, 251, 189–195.

    Article  ADS  Google Scholar 

  27. Rave, W., Schäfer, R., and Hubert, A. (1987) Quantitative observation of magnetic domains with the magneto-optical Kerr effect, J. Magn. Magn. Mat., 65, 7–14.

    Article  ADS  Google Scholar 

  28. Traeger, G., Wenzel, L., and Hubert, A. (1992) Computer experiments on the information depth and the figure of merit in magnetooptics, phys.stat.sol.(a) 131, 201–227.

    Article  ADS  Google Scholar 

  29. Schäfer, R. and Hubert, A. (1990) A new magnetooptic effect related to non-uniform magnetisation on the surface of a ferromagnet, phys. stat. sol. (a) 118, 271–288.

    Article  ADS  Google Scholar 

  30. Grütter, P., Mamin, H.J., and Rugar, D. (1992) Magnetic force microscopy (MFM), Scanning Tunneling Microscopy II (eds R. Wiesendanger, H.J. Giintherodt - Springer-Verlag) 28, 151–207.

    Chapter  Google Scholar 

  31. Hartmann, U., Göddenhenrich, T. and Heiden, C. (1991) Magnetic force microscopy: current status and future trends, J. Magn. Magn. Mat. 101, 263–270.

    Article  ADS  Google Scholar 

  32. van Kesteren, H.W., den Boef, A.J., Zeper, W.B., Spruit, J.H.M. and Jacobs, B.A.J. (1991) Scanning magnetic force microscopy on Co/Pt magneto-optical disks, J. Appl. Phys. 70, 2413–2422.

    Article  ADS  Google Scholar 

  33. Jakubovics, J.P., (1975) Lorentz microscopy and applications (TEM and SEM), Electron Microscopy in Materials Science Part IV, 1303–1403.

    Google Scholar 

  34. Yamamoto, T., Nishizawa, H. and Tsuno, K. (1976) Magnetic domain contrast in backscattered electron images obtained with a scanning electron microscope, Phil. Mag. 34, 311–325.

    Article  ADS  Google Scholar 

  35. Scheinfein, M.R., Unguris, J., Kelley, M.H., Pierce, D.T. and Celotta, R.J. (1990) Scanning electron microscopy with polarization analysis (SEMPA), Rev. Sci. Instrum. 61, 2501–2526.

    Article  ADS  Google Scholar 

  36. Oepen, H.P., Kirschner, J. (1991) Imaging of magnetic microstructures at surfaces: the scanning electron microscope with spin polarization analysis, Scanning Microscopy 5, 1–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chapman, J.N., Kirk, K.J. (1997). Imaging Magnetic Structures in the Transmission Electron Microscope. In: Hadjipanayis, G.C. (eds) Magnetic Hysteresis in Novel Magnetic Materials. NATO ASI Series, vol 338. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5478-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5478-9_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6304-3

  • Online ISBN: 978-94-011-5478-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics