Skip to main content

Use of Polymers and Polymer-Based Composites in Structural Mechanics

  • Chapter
Trends in Structural Mechanics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 54))

  • 485 Accesses

Abstract

Polymers and polymer based composites are becoming increasingly important structural materials. Their mechanical, as well as other physical properties, can significantly change with time and this can seriously influence their long term durability. These time-dependent changes in the materials’ mechanical properties is caused either by a chemical process, or is due simply to the viscoelastic nature of the polymer matrix. In this paper the emphasis will be on the latter phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumgaertel, M. & H.H. Winter 1989. Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol. Acta 28: 511–519.

    Article  Google Scholar 

  • Baumgaaertel, M. & H.H. Winter 1992. Interrelation between discrete and continuous relaxation time spectra. J. Non-Newtonian Fluid Mech. 44: 15–30.

    Article  Google Scholar 

  • Brueller, O.S. 1987. Non-linear characterization of the long term behavior of polymeric materials. Polym. Engn. Sci. 2: 56–90.

    Google Scholar 

  • Cardon, A.H., H.F. Brinson & C.C. Heil 1989. Non-linear viscoelasticity applied for the study of durability of polymer matrix composites. Proc. ECCM 3. Bordeaux.

    Google Scholar 

  • Cardon, A.H., C.C. Heil & H.R. Brouwer 1986. Non-linear behavior of epoxy-matrix composites under combined mechanical and environmental loading. Proc. Int. Symp. on Comp. Mater. Beijing.

    Google Scholar 

  • Carrot, C, J. Guillet, J. May & J. Puaux 1992. Application of the Marquardt-Levenberg procedure to the determination of discrete relaxation spectra. Makromol. Chem. Theory Simul. 1: 215–231.

    Article  Google Scholar 

  • Chang, W.V., R. Bloch & N.W. Tschoegl 1977. Study of the viscoelastic behavior of uncrossl inked (gum) rubbers in moderately large deformations. J. Polym. Sci., Polym. Phys. Ed.. 15: 923–944.

    Article  ADS  Google Scholar 

  • Christensen, R.M. 1979. Mechanics of composites. New York: John Wiley.

    Google Scholar 

  • Elster, C., J. Honercamp & J. Weese 1991. Using Regularization methods for the determination of relaxation and retardation spectra of polymeric liquids. Rheol. Acta, 31:161–174.

    Article  Google Scholar 

  • Emri, I. & N.W. Tschoegl 1993. Generating line spectra from experimental responses. Part I. Relaxation modulus and creep compliance. Rheol Acta 33: 31–321.

    Google Scholar 

  • Emri, I. & N.W. Tschoegl 1994. Generating line spectra from experimental responses. Part IV. Application to experimental data. Rheol Acta 33: 60–70.

    Article  Google Scholar 

  • Emri, I & V. Pavsek (1992). On the Influence of Moisture on the Mechanical Properties of Polymers. Materials Forum 16: 123–131.

    Google Scholar 

  • Ferry, J.D. 1980. Viscoelastic properties of polymers. New York: John Wiley.

    Google Scholar 

  • Fesko, D.G. & N.W. Tschoegl 1971. Time-temperature superposition in thermo- rheologically complex materials.J. Polym. Sci., Part C, Symposia 35: 51–69.

    Article  Google Scholar 

  • Fillers, R.W. & N.W. Tschoegl 1977. The effect of pressure on the mechanical properties of polymers. Trans. Soc. Rheol. 21:51–100.

    Article  Google Scholar 

  • Findley, W., J.S. Lai & K. Onaran 1976. Creep and relaxation of non-linear viscoelastic materials. Amsterdam: North-Holland.

    Google Scholar 

  • Flugge, W. 1975. Viscoelasticity. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Honercamp, J. 1989. Ill-posed problems in rheology. Rheol. Acta 28: 363–371.

    Article  Google Scholar 

  • Honercamp, J. & J. Weese 1989. Determination of the relaxation spectrum by a regularization method. Macromolecules 22: 4372–4377.

    Article  ADS  Google Scholar 

  • Honercamp, J. & J. Weese 1993. A non-linear regularization method for the calculation of relaxation spectra. Rheol. Acta 32: 65–73.

    Article  Google Scholar 

  • Knauss, W.G. & I. Emri 1981. Non-linear viscoelasticity based on free volume consideration. Computer and Structures 13: 123–129

    Article  MATH  Google Scholar 

  • Knauss, W.G. & I. Emri 1987. Volume change and the nonlinearly thermo-viscoelastic constitution of polymers. Polym. Eng. Sci. 27: 86–100.

    Article  Google Scholar 

  • Kovacs, A.J. 1964 Transition vitreuse dans les polymères amorphes. Etude phenomenologique. Adv. Polymer Science 3: 394–507

    Article  Google Scholar 

  • Lou, Y.C. & R.A. Schapery 1971. Viscoelastic characterization of a non-linear fiber reinforced plastics. J. Comp. Mater. 5:208–233.

    Article  Google Scholar 

  • Moonan, W.K. & N.W. Tschoegl 1983. Effect of pressure on the mechanical properties of polymers. 2. Expansivity and compressibility measurements. Macromolecules 16:55–59.

    Article  ADS  Google Scholar 

  • Schapery, R.A. 1961. On the characterization of non-linear viscoelastic materials. Polym. Engn. Sci. 9: 295–310

    Article  Google Scholar 

  • Struik, L.C.E. 1978. Physical aging in amorphous polymers and other materials. Amsterdam: Elsevier.

    Google Scholar 

  • Simhambhatla, M. & A.I. Leonov 1993. The extended Pade-Laplace method for efficient discretization of linear viscoelastic spectra. Rheol. Acta 32: 589–600.

    Article  Google Scholar 

  • Sullivan, J.L. 1990. Creep and physical aging of composites. Comp. Sci. Tech. 39: 207–232.

    Article  Google Scholar 

  • Turtle, M.E. & H.F. Brinson 1985. Prediction of the long-term creep compliance of general composite laminates. Exp. Mech. 3:89–102

    Google Scholar 

  • Tschoegl, N.W. 1989. The phenomenological theory of linear viscoelastic behavior. Berlin: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Tschoegl, N.W. & I. Emri 1992. Generating line spectra from experimental responses. Part III. Interconversion between relaxation and retardation behaviour. Intern. J. Polym. Mater. 18:117–127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Emri, I. (1997). Use of Polymers and Polymer-Based Composites in Structural Mechanics. In: Roorda, J., Srivastava, N.K. (eds) Trends in Structural Mechanics. Solid Mechanics and Its Applications, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5476-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5476-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6303-6

  • Online ISBN: 978-94-011-5476-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics