Skip to main content

Energy Conversion and Use in Forests: An Analysis of Forest Production in Terms of Radiation Utilisation Efficiency (ɛ)

  • Chapter
The Use of Remote Sensing in the Modeling of Forest Productivity

Part of the book series: Forestry Sciences ((FOSC,volume 50))

Abstract

The linear relationship between the photosynthetically active solar radiation (PAR) absorbed by forest canopies (APAR) and the production of dry mass by forests provides a simple, robust model with only one parameter for the estimation of forest production. The slope of the relationship is normally denoted ɛ. The ɛ model has been developed from plant production studies and is soundly based physiologically. It has also evolved from remote sensing studies. Although the relationship between APAR and canopy photosynthesis may be highly variable over short periods, it remains constant over longer periods, such as months or seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D., Melillo, J.M., Nadelhoffer, K.J., McClaugherty, C.A. and Pastor, J.A. 1985. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: A comparison of two methods. — Oecologia 66: 317–321.

    Article  Google Scholar 

  • Arkenbauer, T.J., Weiss, A., Sinclair, T.R. and Blum, A. 1994. In defense of radiation use efficiency: A response to Demetriades-Shah et al. (1992). — Agric. For. Meteorol. 68: 221–227.

    Article  Google Scholar 

  • Bonan, G.B. 1993. Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. — Rem. Sens. Environ. 43: 303–314.

    Article  Google Scholar 

  • Byrne, G.F., Landsberg, J.J. and Benson, M.L. 1986. The relationship of above-ground dry matter accumulation by Pinus radiata to intercepted solar radiation and soil water status. — Agric. For. Meteorol. 37: 63–73.

    Article  Google Scholar 

  • Cannell, M.G.R., Milne, R., Sheppard, L.J. and Unsworth, M.H. 1987. Radiation interception and productivity of willow. — J. Appl. Ecol. 24: 261–268.

    Article  Google Scholar 

  • Cannell, M.G.R., Sheppard, L.J. and Milne, R. 1988. Light use efficiency and woody biomass production of poplar and willow. — Forestry 61: 123–136.

    Article  Google Scholar 

  • Charles-Edwards, D.A. 1982. Physiological Determinants of Crop Growth. — Academic Press, Sydney, Australia. 161 pp.

    Google Scholar 

  • Comins, H.N. and McMurtrie, R.E. 1993. Long-term response of nutrient-limited forests to CO2 enrichment: Equilibrium behavior of plant-soil models. — Ecol. Appl. 3: 666–681.

    Article  Google Scholar 

  • Curran, P.J., Dungan, J.L. and Gholz, H.L. 1992. Seasonal LAI of slash pine estimated by Landsat TM. — Rem. Sens. Environ. 39: 3–13.

    Article  Google Scholar 

  • Demetriades-Shah, T.H., Fuchs, M., Kanemasu, E.T. and Flitcroft, I. 1992. A note of caution concerning the relationship between cumulated intercepted solar radiation and crop growth. — Agric. For. Meteorol. 58: 193–207.

    Article  Google Scholar 

  • Demetriades-Shah, T.H., Fuchs, M., Kanemasu, E.T. and Flitcroft, I.D. 1994. Further discussions on the relationship between cumulated intercepted solar radiation and crop growth. — Agric. For. Meteorol. 68: 231–242.

    Article  Google Scholar 

  • Eck, T.F. and Dye, D.G. 1991. Satellite estimation of incident photosynthetically active radiation using ultra-violet reflectance. — Rem. Sens. Environ. 38: 135–146.

    Article  Google Scholar 

  • Field, C.B. 1983. Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program. — Oecologia 56: 341–347.

    Article  Google Scholar 

  • Field, C.B. 1991. Ecological scaling of carbon gain to stress and resource availability. — In: Mooney, H.A., Winner, W.E. and Pell, E.J. (eds.) Responses of Plants to Multiple Stresses. Academic Press, New York, pp. 35–65.

    Chapter  Google Scholar 

  • Gallagher, J.N. and Biscoe, P.V. 1978. Radiation absorption, growth and yield of cereals. — Agric. Sci. (Cambridge) 91: 47–60.

    Article  Google Scholar 

  • Goward, S.N. 1989. Satellite bioclimatology. — J. Clim. 2: 710–720.

    Article  Google Scholar 

  • Goward, S.N. and Dye, D.G. 1987. Evaluating North American net primary productivity with satellite observations. — Adv. Space Res. 7: 165–174.

    Article  Google Scholar 

  • Goward, S.N. and Huemmrich, K.F. 1992. Vegetation canopy absorptance and the normalized difference vegetation index: An assessment using the SAIL model. — Rem. Sens. Environ. 39: 119–140.

    Article  Google Scholar 

  • Goward, S.N. and Dye, D.G. 1996. Global biospheric monitoring with remote sensing. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in Modeling Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 241–272.

    Google Scholar 

  • Goward, S.N., Huemmrich, K.F. and Waring, R.H. 1993. Visible-near infrared spectral reflectance of landscape components in Western Oregon. — Rem. Sens. Environ. 47: 190–203.

    Article  Google Scholar 

  • Goward, S.N., Tucker, C.J. and Dye, D.G. 1985. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. — Vegetatio 64: 3–14.

    Article  Google Scholar 

  • Goward, S.N., Waring, R.H., Dye, D.G. and Yang, J. 1994. Ecological remote sensing at OTTER: Satellite macroscale observations. — Ecol. Appl. 4: 322–342.

    Article  Google Scholar 

  • Hall, F.G., Huemmrich, K.F. and Goward, S.N. 1990. Use of narrow-band spectra to estimate the fraction of absorbed photosynthetically active radiation. — Rem. Sens. Environ. 32: 47–54.

    Article  Google Scholar 

  • Harley, P.C., Thomas, R.B., Reynolds, J.F. and Strain, B.R. 1992. Modelling photosynthesis of cotton grown in elevated CO2. — Plant Cell Environ. 15: 271–282.

    Article  CAS  Google Scholar 

  • Hunt, E.R. 1994. Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI. — Int. J. Rem. Sens. 15: 1725–1730.

    Article  Google Scholar 

  • Hunt, E.R. and Running, S.J. 1992. Simulated dry matter yields for aspen and spruce stands in the North American boreal forest. — Can. J. Rem. Sens. 18: 126–133.

    Google Scholar 

  • Jarvis, P.G. and Leverenz, J.W. 1983. Productivity of temperate, deciduous and evergreen forests. — In: Lange, O.L., Nobel, P.S., Osmond, C.B. and Ziegler, H. (eds). Encyclopedia of Plant Physiology. Vol. 12D, Physiological Plant Ecology 4. Springer-Verlag, New York, pp. 234–280.

    Google Scholar 

  • Jarvis, P.G., James, G.B. and Landsberg, J.J. 1976. Coniferous forest. — In: Monteith, J.L. (ed). Vegetation and the Atmosphere. Vol. 2. Academic Press, London, pp. 171–240.

    Google Scholar 

  • Kiniry, J.R. 1994. A note of caution concerning the paper by Demetriades-Shah et al. (1992). — Agric. For. Meteorol. 68: 229–230.

    Article  Google Scholar 

  • Kira, T. 1975. Primary production of forests. — In: Photosynthesis and Productivity in Different Environments. J.P. Cooper (ed). Cambridge University Press, Cambridge, UK, pp. 5–40.

    Google Scholar 

  • Kira, T., Sinozaki, K. and Hozumi, K. 1969. Structure of forest canopies as related to their productivity. — Plant Cell Physiol. 10: 129–142.

    Google Scholar 

  • Kirschbaum, M.U.F., King, D.A., Comins, H.N., McMurtrie, R.E., Medlyn, B.E., Pongracic, S., Murty, D., Keith, H., Raison, R.J., Khanna, P.K. and Sheriff, D.W. 1994. Modelling forest response to increasing CO2 concentration under nutrient-limited conditions. — Plant Cell Environ. 17: 1081–1099.

    Article  CAS  Google Scholar 

  • Kumar, M. and Monteith, J.L. 1982. Remote sensing of plant growth. — In: Smith, H. (ed). Plants and the Daylight Spectrum. Academic Press, London, pp. 133–144.

    Google Scholar 

  • Landsberg, J.J. 1967. Responses of lucerne to different soil moisture regimes. — Exp. Agric. 3: 21–28.

    Article  Google Scholar 

  • Landsberg, J.J. 1986. Physiological Ecology of Forest Production. — Academic Press, London. 198 pp.

    Google Scholar 

  • Landsberg, J.J. and Wright, L.L. 1989. Comparisons among Populus clones and intensive culture conditions, using an energy conversion model. — For. Ecol. Manage. 27: 129–147.

    Article  Google Scholar 

  • Larcher, W. 1983. Physiological Plant Ecology. — Springer-Verlag, Berlin. 303 pp.

    Google Scholar 

  • Legg, B.J., Day, W., Lawlor, D.W. and Parkinson, K.J. 1979. The effects of drought on barley growth: Models and measurements showing the relative importance of leaf area and photosynthetic rate. — J. Agric. Sci. 92: 703–716.

    Article  Google Scholar 

  • Linder, S. 1985. Potential and actual production in Australian forest stands. — In: Landsberg, J.J. and Parsons, W. (eds). Research for Forest Management. CSIRO, Canberra, Australia, pp. 11–35.

    Google Scholar 

  • Linder, S., McMurtrie, R.E. and Landsberg, J.J. 1985. Growth of eucalyptus: A mathematical model applied to Eucalyptus globulus. — In: Tigerstedt, P.M.A., Puttonen, P. and Koski, V (eds). Crop Physiology of Forest Trees. Helsinki University Press, Helsinki, pp. 117–126.

    Google Scholar 

  • Linder, S., Benson, M.L., Myers, B.J. and Raison, R.J. 1987. Canopy dynamics and growth of Pinus radiata. Effects of irrigation and fertilization during a drought. — Can. J. For. Res. 17: 1157–1165.

    Article  Google Scholar 

  • Maier, C.A. and Teskey, R.O. 1992. Internal and external control of net photosynthesis and stomatal conductance of mature eastern white pine (Pinus strobes). — Can. J. For. Res. 22: 1387–1394.

    Article  Google Scholar 

  • McMurtrie, R.E., Rook, D.A. and Kelliher, F.M. 1990. Modelling the yield of Pinus radiata on a site limited by water and nitrogen. — For. Ecol. Manage. 30: 381–413.

    Article  Google Scholar 

  • McMurtrie, R.E., Comins, H.N., Kirschbaum, M.U.F and Wang, Y-P. 1992. Modifying existing forest growth models to take account of effects of elevated CO2. — Aust. J. Bot. 40: 675–677.

    Article  Google Scholar 

  • McMurtrie, R.E., Gholz, H.L., Linder, S. and Gower, S.T. 1994. Factors controlling the productivity of pine stands: A model-based analysis. — Ecol. Bull. 43 (Copenhagen): 173–188.

    Google Scholar 

  • Melillo, J.M., McGuire, A.D., Kicklighter, D.W., Moore, B., Vorosmarty, C.J. and Schloss, A. 1993. Global climate change and terrestrial net primary production. — Nature 363: 34–240.

    Article  Google Scholar 

  • Melillo, J.M., Woodward, I.F., Salati, E. and Sinha, S.K. 1990. Effects on ecosystems. — In: Houghton, J.T., Jenkins, G.J. and Ephraums, J.J. (eds). Climate Change. The IPCC Assessment. Cambridge University Press, Cambridge, UK, pp. 283–310.

    Google Scholar 

  • Monteith, J.L. 1977. Climate and the efficiency of crop production in Britain. — Phil. Trans. Roy. Soc. London (Ser. B) 281: 277–294.

    Article  Google Scholar 

  • Monteith, J.L. 1981. Does light limit crop production? — In: Johnson, C.B. (ed). Physiological Processes Limiting Plant Productivity. Butterworths, Toronto, pp. 23–38.

    Google Scholar 

  • Monteith, J.L. 1994. Validity of the correlation between intercepted radiation and biomass. — Agric. For. Meteorol. 68: 213–220.

    Article  Google Scholar 

  • Myers, B.J. 1988. Water stress integral — A link between short-term stress and long-term growth. — Tree Physiol. 4: 315–232.

    Article  PubMed  Google Scholar 

  • Nadelhoffer, K.J., Aber, J.D. and Melillo, J.M. 1985. Fine roots, net primary production, and soil nitrogen availability: A new hypothesis. — Ecology 66: 1377–1390.

    Article  Google Scholar 

  • Nemani, R., Pierce, L. and Running, S.W. 1993. Developing satellite-derived estimates of surface moisture status. — J. Appl. Meteorol. 32: 548–557.

    Article  Google Scholar 

  • Pierce, L.L. and Running, S.W. 1988. Rapid estimation of coniferous forest leaf area index using a portable integrating radiometer. — Ecology 69: 1762–1769.

    Article  Google Scholar 

  • Pook, E.W. 1986. Canopy dynamics of Eucalyptus maculata Hook. 4. Contrasting responses to two severe droughts. — Aust. J. Bot. 34: 1–14.

    Article  Google Scholar 

  • Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A. and Klooster, S.A. 1993. Terrestrial ecosystem production: A process model based on global satellite and surface data. — Glob. Biogeochem. Cycl. 7: 811–841.

    Article  Google Scholar 

  • Prince, S.D. 1991a. Satellite remote sensing of primary production: Comparison of results for Sahelian grasslands 1981–1988. — Int. J. Rem. Sens. 12: 1301–1311.

    Article  Google Scholar 

  • Prince, S.D. 1991b. A model of regional primary production for use with coarse-resolution satellite data. — Int. J. Rem. Sens. 12: 1313–1330.

    Article  Google Scholar 

  • Prince, S.D. and Goward, S.N. 1996. Global net primary production: The remote sensing approach. — J. Biogeog. (in press).

    Google Scholar 

  • Raich, J.W. and Nadelhoffer, K.J. 1989. Below ground carbon allocation in forest ecosystems: Global trends. — Ecology 70: 1346–1354.

    Article  Google Scholar 

  • Raich, J.W., Rastetter, E.B., Melillo, J.M., Kicklighter, D.W., Steudler, P.A., Peterson, B.J., Grace, A.L., Moore, B. and Vorosmarty, C.J. 1991. Potential net primary production in South America: Application of a global model. — Ecol. Appl. 1: 399–429.

    Article  Google Scholar 

  • Raison, R.J. and Myers, B.J. 1992. The Biology of Forest Growth experiment: Linking water and nitrogen availability to the growth of Pinus radiata. — For. Ecol. Manage. 52: 279–308.

    Article  Google Scholar 

  • Rauner, J.L. 1976. Deciduous Forests. — In: Monteith, J.L. (ed). Vegetation and the Atmosphere. Vol. 2. Academic Press, London, pp. 241–264.

    Google Scholar 

  • Ruimy, A., Saugier, B. and Dedieu, G. 1994. Methodology for the estimation of net primary production from remotely sensed data. — J. Geophys. Res. 99: 5263–5283.

    Article  Google Scholar 

  • Running, S.W. 1994. Testing FOREST-BGC ecosystem process simulations across a climatic gradient in Oregon. — Ecol. Appl. 4: 238–247.

    Article  Google Scholar 

  • Running, S.W. and Coughlan, J.C. 1988. A general model of forest ecosystem processes for regional applications. 1. Hydrologic balance, canopy gas exchange and primary production processes. — Ecol. Model. 42: 125–154.

    Article  CAS  Google Scholar 

  • Running, S.W. and Gower, S.T. 1991. FOREST-BGC, a general model of forest ecosystem processes for regional applications. 2. Dynamic carbon allocation and nitrogen budgets. — Tree Physiol. 9: 147–160.

    Article  PubMed  CAS  Google Scholar 

  • Running, S.W. and Hunt, E.R. 1993. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global scale models. — In: Ehleringer, J.R. and Field, C.B. (eds). Scaling Physiological Processes: Leaf to Globe. Academic Press, San Diego, CA, pp. 141–158.

    Chapter  Google Scholar 

  • Running S.W., Justice, C.O., Salomonson, V., Hall, D., Barker, J., Kaufman, Y.J., Strahler, A.H., Huete, A.R., Müller, J-P., Vanderbuilt, V., Wan, Z.M., Teillet, P. and Carnegie, D. 1994. Terrestrial remote sensing science and algorithms planned for EOS/MODIS. — Int. J. Rem. Sens. 15: 3587–3620.

    Article  Google Scholar 

  • Running, S.W., Nemani, R.R. and Hungerford, R.D. 1987. Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. — Can. J. For. Res. 17: 472–483.

    Article  Google Scholar 

  • Runyon, J., Waring, R.H., Goward, S.N. and Welles, J.M. 1994. Environmental limits on net primary production and light-use efficiency across the Oregon transect. — Ecol. Appl. 4: 226–237.

    Article  Google Scholar 

  • Russell, G., Jarvis, P.G. and Monteith, J.L. 1989. Absorption of radiation by canopies and stand growth. — In: Russell, G., Marshall, B. and Jarvis, P.G. (eds). Plant Canopies: Their Growth, Form and Function. Cambridge University Press, Cambridge, UK, pp. 21–39.

    Chapter  Google Scholar 

  • Ryan, M.G. and Waring, R.H. 1992. Maintenance respiration and stand development in a subalpine lodgepole pine forest. — Ecology 73: 2100–2108.

    Article  Google Scholar 

  • Sabatier-Tarrago, C. 1989. “Production de taillis de Chataignier (Cutanea sativa, Mill.) en relation avec les characteristiques stationelles.” — Ph.D. thesis, Univ. Paris-Sud, Orsay. 250 pp.

    Google Scholar 

  • Saldarriaga, J.G. and Luxmoore, R.J. 1991. Solar energy conversion efficiencies during succession of a tropical rainforest in Amazonia. — J. Trop. Ecol. 7: 233–242.

    Article  Google Scholar 

  • Saldarriaga, J.D., West, D.C., Tharp, M.L. and Uhl, C. 1988. Long-term chronosequences of forest succession in the upper Rio Negro of Colombia and Venezuela. — J. Ecol. 76: 938–958.

    Article  Google Scholar 

  • Schulze, E-D., Kelliher, F.M., Körner, C., Lloyd, J. and Leuning, R. 1994. Relationship among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. — Ann. Rev. Ecol. Syst. 25: 629–660.

    Article  Google Scholar 

  • Sellers, P.J. 1985. Canopy reflectance, photosynthesis and transpiration. — Int. J. Rem. Sens. 6: 1335–1372.

    Article  Google Scholar 

  • Sellers, P.J., Berry, J.A., Collatz, G.J., Field, C.B. and Hall, EG. 1992. Canopy reflectance, photosynthesis, and transpiration. 3. A reanalysis using improved leaf models and a new canopy integration scheme. — Rem. Sens. Environ. 42: 187–216.

    Article  Google Scholar 

  • Sinclair, T.R. and Horie, T. 1989. Leaf nitrogen, photosynthesis and crop radiation efficiency: A review. — Crop Sci. 29: 90–98.

    Article  Google Scholar 

  • Sinclair, T.R. and Shiraiwa, T. 1993. Soybean radiation use efficiency as influenced by nonuniform specific leaf nitrogen distribution and diffuse radiation. — Crop Sci. 33: 808–812.

    Article  CAS  Google Scholar 

  • Spanner, M.A., Pierce, L.L., Running, S.W. and Peterson, D.L. 1990a. The seasonality of AVHRR data of temperate coniferous forests: Relationship with leaf area index. — Rem. Sens. Environ. 33: 97–112.

    Article  Google Scholar 

  • Spanner, M.A., Pierce, L.L., Running, S.W. and Peterson, D.L. 1990b. Remote sensing of temperate coniferous forest leaf area index. The influence of canopy closure, understory vegetation and background reflectance. — Int. J. Rem. Sens. 11: 95–111.

    Article  Google Scholar 

  • Spanner, M.A., Johnson, L., Miller, J., McCreight, R., Freemantle, J., Runyon, J. and Gong, P. 1994. Remote sensing of seasonal leaf area index across the Oregon transect. — Ecol. Appl. 4: 258–271.

    Article  Google Scholar 

  • Stigter, C.J. and Musabilha, V.M.M. 1982. The conservative ratio of photosynthetically active radiation to total radiation in the tropics. — J. Appl. Ecol. 19: 853–858.

    Article  Google Scholar 

  • Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. — Rem. Sens. Environ. 8: 127–150.

    Article  Google Scholar 

  • Tucker, C.J., Vanpraet, C.L., Sharman, M.J. and Van Ittersum, G. 1985. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. — Rem. Sens. Environ. 17: 233–249.

    Article  Google Scholar 

  • Vogt, K. 1991. Carbon budgets of temperate forest ecosystems. — Tree Physiol. 9: 69–86.

    Article  PubMed  Google Scholar 

  • Wang, Y.P. and Jarvis, P.G. 1990. Description and validation of an array model — MAESTRO. — Agric. For. Meteorol. 51: 257–280.

    Article  Google Scholar 

  • Wang, Y.P., Jarvis, P.G. and Taylor, C.M.A. 1991. PAR absorption and its relation to aboveground dry matter production of Sitka spruce. — J. Appl. Ecol. 28: 547–560.

    Article  Google Scholar 

  • Wang, Y-P., McMurtrie, R.E. and Landsberg, J.J. 1992. Modelling canopy photosynthetic productivity. — In: Baker, N.R. and Thomas, H. (eds). Crop Photosynthesis: Spatial and Temporal Determinants. 5. Elsevier Science Publishers, Amsterdam, pp. 43–67.

    Google Scholar 

  • Waring, R.H. and Silvester, W.B. 1994. Variation in foliar δ13 C values within the tree crowns of Pinus radiata. — Tree Physiol. 14: 1203–1213.

    Article  PubMed  Google Scholar 

  • Waring, R.H., Law, B.E., Goulden, M.L., Bassow, S.L., McCreight, R.W., Wofsy, S.C. and Bazzaz, F.A. 1995. Scaling gross ecosystem production at Harvard Forest with remote sensing: A comparison of estimates from a constrained quantum-use efficiency model and eddy correlation. — Plant Cell Environ. 18: 1201–1213.

    Article  Google Scholar 

  • West, P.W. and Osler, G.H.R. 1995. Growth responses to thinning and its relation to site resources in Eucalyptus regnans F. Muell. (in press).

    Google Scholar 

  • Yoder, B.J. and Waring, R.H. 1994. The normalized difference vegetation index of small Douglas-fir canopies with varying chlorophyll concentrations. — Rem. Sens. Environ. 49: 81–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Landsberg, J.J., Prince, S.D., Jarvis, P.G., McMurtrie, R.E., Luxmoore, R., Medlyn, B.E. (1997). Energy Conversion and Use in Forests: An Analysis of Forest Production in Terms of Radiation Utilisation Efficiency (ɛ). In: Shimoda, H., Gholz, H.L., Nakane, K. (eds) The Use of Remote Sensing in the Modeling of Forest Productivity. Forestry Sciences, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5446-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5446-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6290-9

  • Online ISBN: 978-94-011-5446-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics