Skip to main content

Global Biospheric Monitoring with Remote Sensing

  • Chapter

Part of the book series: Forestry Sciences ((FOSC,volume 50))

Abstract

Current understanding of global-scale patterns of terrestrial biospheric processes is relatively poor. A better understanding of these patterns is needed to evaluate global environmental changes that may occur in the near future. Satellite remote sensing offers significant promise for providing the information needed to improve this understanding, but uncertainty concerning remote sensing signal information still hinders its usage. This chapter explores selected examples of satellite-derived information based on current understanding of the observations. Primary emphasis is given to the use of Advanced Very High Resolution Radiometer (AVHRR) observations to parameterize primary production efficiency models. Specifically, we consider the bases for extracting information on incident photosynthetically active radiation (PAR), the fraction of PAR captured by plant canopies, air temperature, atmospheric vapor pressure deficits, surface soil moisture and above-ground biomass from satellite observations. Utilizing the potential of satellite remote sensing — the record of terrestrial vegetation and related environmental spatiotemporal patterns — in global-scale ecological research now appears feasible. Further significant progress will be achieved not only with better sensors but more importantly by the development of new conceptual perspectives that consider the linkages between what is observed by the sensors and what occurs in the terrestrial biosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D. 1992. Terrestrial ecosystems. — In: Trenberth, K.E. (ed). Climate Systems Modeling. Cambridge University Press, Cambridge, UK, pp. 173–200.

    Google Scholar 

  • Allen, W.A. and Richardson, A.J. 1968. Interaction of light with a plant canopy. — Appl. Opt. 58: 372–376.

    Google Scholar 

  • Asrar, G. (ed). 1989. Theory and Applications of Optical Remote Sensing. — J. Wiley and Sons, New York. 734 pp.

    Google Scholar 

  • Asrar, G. and Dokken, D.J. 1993. 1993 EOS Reference Handbook. — NASA Earth Science Support Office, Goddard Space Flight Center, NP-202, Greenbelt, MD. 145 pp.

    Google Scholar 

  • Asrar, G., Fuchs, M., Kanemasu, E.T. and Hatfield, J.L. 1984. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. — Agron. J. 76: 300–306.

    Article  Google Scholar 

  • Aston, A.R. and van Bavel, C.H.M. 1972. Soil surface water depletion and leaf temperature. — Agron. J. 64: 368–373.

    Article  Google Scholar 

  • Badhwar, G.D. 1984. Automatic corn-soybeans feature extraction and classification. — Rem. Sens. Environ. 14: 15–29.

    Article  Google Scholar 

  • Baret, F. and Guyot, G. 1991. Potential and limits of vegetation indices for LAI and APAR assessment. — Rem. Sens. Environ. 35: 161–173.

    Article  Google Scholar 

  • Bauer, M.E., Daughtry, C.S.T. and Vanderbilt, V.C. 1981. Spectral-agronomic relations of corn, soybeans and wheat canopies. — LARS Purdue University, Technical Report 091281, West Lafayette, IN. 204 pp.

    Google Scholar 

  • Billings, W.D. and Morris, R.J. 1951. Reflection of visible and infrared radiation from leaves of different ecological groups. — Am. J. Bot. 38: 327–331.

    Article  Google Scholar 

  • Blair, B.O. and Baumgardner, M.F. 1977. Detection of green and brown wave in hardwood canopy covers using multi-date, multispectral data from Landsat-1. — Agron. J. 69: 808–811.

    Article  Google Scholar 

  • Bolin, B. 1977. Changes of land biota and their importance for the carbon cycle. — Science 196: 613–615.

    Article  PubMed  CAS  Google Scholar 

  • Box, E.O. 1988. Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere. — J. Appl. Meteorol. 27: 1109–1123.

    Article  Google Scholar 

  • Box, E.O., Holben, B.N. and Kalb, V. 1989. Accuracy of the AVHRR vegetation index as a predictor of biomass, primary productivity and net CO2 flux. — Vegetatio 80: 71–89.

    Article  Google Scholar 

  • Budyko, M.I. 1974. Climate and Life. — Academic Press, New York. 508 pp.

    Google Scholar 

  • Budyko, M.I. 1980. Global Ecology. — Progress Publishers, Moscow. 322 pp.

    Google Scholar 

  • Carlson, T.N. and Buffum, M.J. 1989. On estimating total daily evaporation from remote surface temperature measurements. — Rem. Sens. Environ. 29: 197–207.

    Article  Google Scholar 

  • Carlson, T.N., Perry, E.M. and Schmugge, T.J. 1990. Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields. — Agric. For. Meteorol. 52: 45–69.

    Article  Google Scholar 

  • Carlson, T.N., Gilles, R.R. and Perry, E.M. 1994. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. — Rem. Sens. Rev. 9: 161–173.

    Article  Google Scholar 

  • Choudhury, B.J. 1986. An analysis of observed linear correlation between net photosynthesis and a canopy-temperature-based plant water stress index. — Agric. For. Meteorol. 36: 323–333.

    Article  Google Scholar 

  • Choudhury, B.J. 1989. Monitoring global land surface using NIMBUS-7 37 GHz polarization difference. — Int. J. Rem. Sens. 10: 1579–1605.

    Article  Google Scholar 

  • Coakley, J.A., Jr. and Bretherton, E.P. 1982. Cloud cover from high-resolution scanner data: Detecting and allowing for partially filled fields of view. — J. Geophys. Res. 87(C7): 4917–4932.

    Article  Google Scholar 

  • Colwell, J.E. 1974. Vegetation canopy reflectance. — Rem. Sens. Environ. 3: 174–183.

    Article  Google Scholar 

  • Colwell, R.N. 1956. Determining the prevalence of certain cereal crop diseases by means of aerial photography. — Hildgardia 26(5): 223–286.

    Google Scholar 

  • Committee on Earth Observation Satellites. 1995. Coordination for the next decade. — In: 1995 CEOS Yearbook. 133 pp.

    Google Scholar 

  • Curran, P.J. 1981. Multispectral remote sensing for estimating biomass and productivity. — In: Smith, H. (ed). Plants in the Daylight Spectrum. Academic Press, London, pp. 65–99.

    Google Scholar 

  • Curran, P.J. 1983. Multispectral remote sensing for estimation of green leaf area index. — Phil. Trans. Roy. Soc. London (Series A) 309: 257–270.

    Article  Google Scholar 

  • Curran, P.J. and Milton, E.J. 1983. The relationship between the chlorophyll concentration, LAI and reflectance of a simple vegetation canopy. — Int. J. Rem. Sens. 4(2): 247–255.

    Article  Google Scholar 

  • Cushnie, J. 1988. The acquisition of SPOT-1 HRV imagery over southern Britain and northern France, May 1986–May 1987. — Int. J. Rem. Sens. 9: 159–167.

    Article  Google Scholar 

  • Dalu, G. 1986. Satellite remote sensing of atmospheric water vapor. — Int. J. Rem. Sens. 7: 1089–1097.

    Article  Google Scholar 

  • Darnell, W.L., Staylor, W.F., Gupta, S.K., Ritchey, N.A. and Wilber, A.C. 1992. Seasonal variation of surface radiation budget from International Satellite Cloud Climatology Project C1 data. — J. Geophys. Res. 97(D14): 15741–15760.

    Article  Google Scholar 

  • Daughtry, C.S.T., Gallo, K.D. and Bauer, M.E. 1982. Spectral estimates of solar radiation intercepted by corn canopies. — Purdue University, AgRISTARS Technical Report sr-PZ-04236, West Lafayette, IN. 82 pp.

    Google Scholar 

  • Daughtry, C.S.T., Gallo, K.D., Goward, S.N., Prince, S.D. and Kustas, W.P. 1992. Spectral estimates of absorbed radiation and phytomass in plant canopies. — Rem. Sens. Environ. 39: 141–152.

    Article  Google Scholar 

  • Deering, D.W., Rouse, J.J.W., Haas, R.H. and Schell, J.S. 1975. Measuring forage production of grazing units from Landsat MSS data. — In: Proceedings of the Tenth International Symposium on Remote Sensing of the Environment, Environmental Research Institute of Michigan, Ann Arbor, MI, pp. 1169–1178.

    Google Scholar 

  • DeFries, R.S. and Townshend, J.R.G. 1994. Global land cover: Comparison of ground-based data sets to classification with AVHRR data. — In: Foody, G. and Curran, P. (eds). Environmental Remote Sensing from Regional to Global Scales. J. Wiley and Sons, New York, pp. 84–110.

    Google Scholar 

  • Dethier, B.E. 1974. Phenology Satellite Experiment, Final Report. — Cornell University, Contract NAS 5-21781, Ithaca, NY. 758 pp.

    Google Scholar 

  • Dobson, M.C., Ulaby, F.T. and LeToan, T. 1992. Dependence of RADAR backscatter on conifer forest biomass. — IEEE Trans. Geosci. Rem. Sens. 30: 412–431.

    Article  Google Scholar 

  • Duvigneaud, P., Bolin, B., Degens, E.T. and Kempe, S. 1979. The global bio-geo-chemical carbon cycle. — In: Bolin, B., Degens, E.T., Kempe, S. and Ketner, P. (eds). The Global Carbon Cycle. J. Wiley and Sons, New York, pp. 1–56.

    Google Scholar 

  • Dye, D.G. and Goward, S.N. 1993. Photosynthetically active radiation absorbed by global land vegetation during August 1984. — Int. J. Rem. Sens. 14: 3361–3364.

    Article  Google Scholar 

  • Eck, T.E. and Dye, D.G. 1991. Satellite estimation of incident photosynthetically active radiation using ultraviolet reflectance. — Rem. Sens. Environ. 38: 135–146.

    Article  Google Scholar 

  • Eck, T.E., Bhartia, F., Hwang, P.K. and Stowe, L.L. 1987. Reflectivity of the Earth’s surface and clouds in ultraviolet wavelengths from satellite observations. — J. Geophys. Res. 92: 4287–4296.

    Article  Google Scholar 

  • Ehleringer, J.R. 1978. Implications of quantum yield differences on the distributions of C3 and C4 grasses. — Oecologia 31: 255–267.

    Article  Google Scholar 

  • Ehleringer, J.R. and Bjorkman, O. 1977. Quantum yields for CO2 uptake in C3 and C4 plants. — Plant Physiol. 59: 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer, J.R. and Mooney, H.A. 1978. Leaf hairs: Effects on physiological activity and adaptive value to a desert shrub. — Oecologia 37: 183–200.

    Article  Google Scholar 

  • Ehleringer, J.R. and Werk, K.S. 1986. Modifications of solar-radiation absorption patterns and implications for carbon gain at the leaf level. — In: Givnish, T.J. (ed). On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, UK, pp. 57–80.

    Google Scholar 

  • Ehleringer, J.R. and Field, C.B. (eds). 1993. Scaling Ecological Processes: Leaf to Globe. — Academic Press, San Diego, CA. 388 pp.

    Google Scholar 

  • Ehrlich, PR. and Roughgarden, J. 1987. The Science of Ecology. — MacMillan, New York. 710 pp.

    Google Scholar 

  • Eickmeier, W.G. 1978. Photosynthetic pathway distributions along an aridity gradient in Big Bend National Park, and implications for enhanced resource partitioning. — Photosynthetica 12: 290–297.

    CAS  Google Scholar 

  • Field, C.B. 1991. Ecological scaling of carbon gain to stress and resource availability. — In: Mooney, H.A., Winner, W.E. and Pell, E.J. (eds). Responses of Plants to Multiple Stresses. Academic Press, New York, pp. 35–65.

    Chapter  Google Scholar 

  • Foran, B.D. 1987. Detection of yearly cover change with Landsat MSS on pastoral landscapes in Central Australia. — Rem. Sens. Environ. 23: 333–350.

    Article  Google Scholar 

  • Forseth, I.N. and Ehleringer, J.R. 1983. Ecophysiology of two solar tracking desert annuals 4. Effects of leaf orientation on calculated daily carbon gain and water use efficiency. — Oecologia 58: 10–18.

    Article  Google Scholar 

  • Freden, S.C. and Gorden, F., Jr. 1983. Landsat Satellites. — In: Colwell, R.N. (ed). Manual of Remote Sensing. 2d ed. American Society of Photogrammetry, Falls Church, VA, pp. 517–570.

    Google Scholar 

  • Gates, D.M. 1980. Biophysical Ecology. — Springer-Verlag, New York. 611 pp.

    Book  Google Scholar 

  • Gates, D.M., Keegan, H.J., Schleter, J.C. and Weidner, V.R. 1965. Spectral properties of plants. — Appl. Opt. 4: 11–20.

    Article  Google Scholar 

  • Geiger, R. 1965. The Climate Near the Ground. — Harvard University Press, Cambridge, MA. 611pp.

    Google Scholar 

  • Goward, S.N. 1985. Shortwave infrared detection of vegetation. — Adv. Space Res. 5(5): 41–50.

    Article  Google Scholar 

  • Goward, S.N. 1989. Satellite bioclimatology. — J. Clim. 7(2): 710–720.

    Article  Google Scholar 

  • Goward, S.N. and Oliver, J.E. 1977. The Application of Remote Sensing Techniques in Microscale Climatology. — Indiana Academy of Science, Indianapolis, IN. pp. 326–337.

    Google Scholar 

  • Goward, S.N. and Dye, D.G. 1987. Evaluating North American net primary productivity with satellite observations. — Adv. Space Res. 7(11): 165–174.

    Article  Google Scholar 

  • Goward, S.N. and Hope, A.S. 1989. Evapotranspiration from combined reflected solar and emitted terrestrial radiation: Preliminary FIFE results from AVHRR data. — Adv. Space Res. 9(7): 239–249.

    Article  Google Scholar 

  • Goward, S.N. and Kazantsev, N.N. 1991. Monitoring environmental change: Geographic information systems and remote sensing. — In: Mather, J.R. and Sdasyuk, G.V. (eds). Global Change: Geographical Approaches. University of Arizona Press, Tucson, AZ, pp. 183–198.

    Google Scholar 

  • Goward, S.N. and Huemmrich, K.F. 1992. Vegetation canopy PAR absorptance and the normalized difference vegetation index: An assessment using the SAIL model. — Rem. Sens. Environ. 39: 119–140.

    Article  Google Scholar 

  • Goward, S.N., Cruickshanks, G.C. and Hope, A.S. 1985a. Observed relation between thermal emissions and reflected spectral reflectance from a complex vegetated landscape. — Rem. Sens. Environ. 18: 137–146.

    Article  Google Scholar 

  • Goward, S.N., Tucker, C.J. and Dye, D.G. 1985b. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. — Vegetatio 64: 3–14.

    Article  Google Scholar 

  • Goward, S.N., Kerber, A., Dye, D.G. and Kalb, V. 1987. Comparison of North and South American biomes from AVHRR observations. — Geocarto 2(1): 27–40.

    Article  Google Scholar 

  • Goward, S.N., Markham, B., Dye, D.G., Dulaney, W. and Yang, J. 1991. Normalized difference vegetation index measurements from advanced very high resolution radiometer. — Rem. Sens. Environ. 35(2,3): 259–279.

    Google Scholar 

  • Goward, S.N., Huemmrich, K.F. and Waring, R.H. 1994a. Visible-near infrared spectral reflectance properties of landscape components in western Oregon. — Rem. Sens. Environ. 4(2): 322–343.

    Google Scholar 

  • Goward, S.N., Waring, R.H., Dye, D.G. and Yang, J. 1994b. Ecological remote sensing at OTTER: Macroscale satellite observations. — Ecol. Appl. 4(2): 322–343.

    Article  Google Scholar 

  • Graetz, R.D. and Gentle, R.D. 1982. The relationships between reflectance in the Landsat wavebands and the composition of an Australian semi-shrub rangeland. — Photogramm. Engin. Rem. Sens. 48: 1721–1730.

    Google Scholar 

  • Grigg, D. 1987. The industrial revolution and land transformation. — In: Wolman, M.G. and Fournier, F.G.A. (eds). Land Transformation in Agriculture. J. Wiley and Sons, New York, pp. 79–109.

    Google Scholar 

  • Gurney, R.J., Foster, J.L. and Parkinson, C.L. (eds). 1993. Atlas of Satellite Observations Related to Global Change. — Cambridge University Press, Cambridge, UK. 470 pp.

    Google Scholar 

  • Gutman, G., Tarpley, D. and Ohring, G. 1987. Cloud screening for determination of land surface characteristics in reduced resolution satellite data set. — Int. J. Rem. Sens. 8(6): 859–870.

    Article  Google Scholar 

  • Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D. and Russell, G. 1981. Climatic impact of increasing atmospheric carbon dioxide. — Science 213: 957–966.

    Article  PubMed  CAS  Google Scholar 

  • Harris, A.R. and Mason, I.M. 1992. An extension of the split-window technique giving improved atmospheric correction and total water vapor. — Int. J. Rem. Sens. 13(5): 881–892.

    Article  Google Scholar 

  • Hatfield, J.L., Asrar, G. and Kanemasu, E.T. 1984. Intercepted photosynthetically active radiation estimated by spectral reflectance. — Rem. Sens. Environ. 14: 65–75.

    Article  Google Scholar 

  • Heilman, J.L., Kanemasu, E.T., Rosenberg, N.J. and Blad, B.L. 1976. Thermal scanner measurement of canopy temperatures to estimate evapotranspiration. — Rem. Sens. Environ. 5: 127–145.

    Article  Google Scholar 

  • Heimann, M. and Keeling, C.D. 1989. A three dimensional model of atmospheric CO2 transport based on observed winds: 2. Model description and simulated tracer experiments. — Geophy. Monogr. 55: 237–275.

    Article  Google Scholar 

  • Helldén, U. 1987. An assessment of woody biomass, community forests, landuse and soil erosion in Ethiopia. A feasibility study on the use of remote sensing and GIS-analysis for planning purposes in developing countries. — University of Lund, Department of Geography, Lund, Sweden. 75 pp.

    Google Scholar 

  • Holben, B.N. 1986. Characteristics of maximum-value composite images from temporal AVHRR data. — Int. J. Rem. Sens. 7: 1417–1434.

    Article  Google Scholar 

  • Holben, B.N., Tucker, C.J. and Fan, C.J. 1980. Assessing soybean leaf area and leaf biomass with spectral data. — Photogramm. Engin. 46: 651–656.

    Google Scholar 

  • Hope, A.S. and McDowell, T.P. 1992. The relationship between surface temperature and a spectral vegetation index of a tallgrass prairie: Effects of burning and other landscape controls. — Int. J. Rem. Sens. 13(15): 2849–2863.

    Article  Google Scholar 

  • Hope, A.S., Petzold, D.E., Goward, S.N. and Ragan, R.M. 1987. Simulating canopy reflectance and thermal infrared emissions for estimating evapotranspiration. — Water Res. Bull. 22(6): 1011–1019.

    Article  Google Scholar 

  • Houghton, J.T., Jenkins, G.J. and Ephraums, J.J. 1990. Climate Change: The IPCC Scientific Assessment. — Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Huete, A.R. 1988. A soil-adjusted vegetation index (SAVI). — Rem. Sens. Environ. 25: 295–309.

    Article  Google Scholar 

  • Huete, A.R. and Tucker, C.J. 1991. Investigation of soil influences in AVHRR imagery. — Int. J. Rem. Sens. 12(6): 1223–1242.

    Article  Google Scholar 

  • Huete, A.R., Jackson, R.D. and Post, D.F. 1986. Spectral response of a plant canopy with different soil backgrounds. — Rem. Sens. Environ. 17: 37–53.

    Article  Google Scholar 

  • Hunt, E.R., Jr. 1994. Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI. — Int. J. Rem. Sens. 15: 1725–1730.

    Article  Google Scholar 

  • Hussin, Y.A., Reich, R.M. and Hoffer, R.M. 1991. Estimating slash pine biomass using RADAR backscatter. — IEEE Trans. Geosci. Rem. Sens. 29: 427–438.

    Article  Google Scholar 

  • Ives, R.L. 1939. Infra-red photography as an aid in ecological surveys. — Ecology 20(3): 433–439.

    Article  Google Scholar 

  • Jackson, R.D. 1983. Spectral indices in n-space. — Rem. Sens. Environ. 13: 1401–1429.

    Google Scholar 

  • Jackson, R.D., Idso, S.B., Reginato, R.J. and Pinter, P.J. 1981. Canopy temperature as a crop stress indicator. — Water Res. Res. 4: 1133–1138.

    Article  Google Scholar 

  • James, M.J. and Kullari, S. 1994. The Pathfinder AVHRR land data set: An improved coarse resolution data set for terrestrial monitoring. — Int. J. Rem. Sens. 15(17): 3347–3364.

    Article  Google Scholar 

  • Jarvis, R.G. and Leverenz, J.W. 1983. Productivity of temperate, deciduous and evergreen forests. — In: Lange, O.L., Nobel, P.S., Osmond, C.B. and Ziegler, H. (eds). Physiological Plant Ecology IV. Springer-Verlag, New York, pp. 223–280.

    Google Scholar 

  • Jasinski, M.F. and Eagleson, P.S. 1990. Estimation of subpixel vegetation cover using red-infrared scattergrams. — IEEE Trans. Geosci. Rem. Sens. 28(2): 253–267.

    Article  Google Scholar 

  • Jayroe, R.R., Jr. 1978. Some observations about Landsat digital analysis. — NASA, Marshall Space Flight Center, NASA Technical Memo 78184, Huntsville, AL. 35 pp.

    Google Scholar 

  • Jedlovec, G.J. 1990. Precipitable water estimation from high-resolution split window radiance measurements. — J. Appl. Meteorol. 29: 863–877.

    Article  Google Scholar 

  • Jordan, C.F. 1969. Derivation of leaf area index from quality of light on the forest floor. — Ecology 50(4): 663–666.

    Article  Google Scholar 

  • Justice, C.O., Townshend, J.R.G., Holben, B.N. and Tucker, C.J. 1985. Analysis of the phenology of global vegetation using meteorological satellite data. — Int. J. Rem. Sens. 6(8): 1271–1381.

    Article  Google Scholar 

  • Justice, C.O., Eck, T., Tanré, D. and Holben, B.N. 1991. The effect of water vapor on the normalized difference vegetation index derived for the Sahelian Region from NOAA AVHRR data. — Int. J. Rem. Sens. 12(6): 1165–1188.

    Article  Google Scholar 

  • Kaufman, Y. and Tanré, D. 1992. Atmospherically Resistant Vegetation Index (ARVI). — IEEE Trans. Geosci. Rem. Sens. 30(2): 261–270.

    Article  Google Scholar 

  • Kauth, R.J. and Thomas, G.S. 1976. The tasseled cap — a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. — In: Proceedings of the Tenth Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, IN, pp. 41–51.

    Google Scholar 

  • Kettig, R.L. and Landgrebe, D.A. 1976. Classification of spectral image data by extraction and classification of homogeneous objects. — IEEE Trans. Geosci. Electr. 14: 19–25.

    Article  Google Scholar 

  • Kimes, D.S. and Kirchner, J.A. 1982. Radiative transfer model for heterogeneous 3-D scenes. — Appl. Opt. 21: 4119–1438.

    Article  PubMed  CAS  Google Scholar 

  • Kleespies, T.J. and McMillin, L.M. 1990. Retrieval of precipitable water from observations on split window over varying surface temperatures. — J. Appl. Meteorol. 29: 851–862.

    Article  Google Scholar 

  • Koomanoff, V.A. 1989. Analysis of global vegetation patterns: A comparison between remotely sensed data and a conventional map. — University of Maryland, Department of Geography, Biogeography Research Series Report 890201, College Park, MD. 111 pp.

    Google Scholar 

  • Krinov, E.L. 1947. Spectral Reflectance of Natural Formations (transl. by NEC of Canada, T1439, G. Belkov). — Akad. Nank, USSR, Laboratorica Aerometodov, Moscow. 271 pp.

    Google Scholar 

  • Kumar, M. and Monteith, J.L. 1981. Remote sensing of crop growth. — In: Smith, H. (ed). Plants in the Daylight Spectrum. Academic Press, New York, pp. 134–144.

    Google Scholar 

  • Landsberg, J.J. 1986. Physiological Ecology of Forest Production. — Academic Press, London. 198 pp.

    Google Scholar 

  • Landsberg, J.J., Prince, S.D., Jarvis, P.G., McMurtrie, R.E., Luxmoore, R. and Medlyn, B.E. 1996. Energy conversion and use in forests: An analysis of forest production in terms of radiation utilisation efficiency (ɛ). — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 273–298.

    Google Scholar 

  • Li, X. and Strahler, A.H. 1985. Geometric-optical modeling of a conifer forest canopy. — IEEE Trans. Geosci. Rem. Sens. GE-23(5): 705–721.

    Article  Google Scholar 

  • Löf, G.O.G., Duffie, J.A. and Smith, C.O. 1966. World distribution of solar radiation. — University of Wisconsin, Solar Energy Lab, Engineering Experiment Stations, Report 21, Madison, WI. 70 pp.

    Google Scholar 

  • Long, S.P. 1983. C4 photosynthesis at low temperatures. — Plant Cell Environ. 6: 345–363.

    CAS  Google Scholar 

  • Major, D.J., Baret, F. and Guyot, G. 1990. A ratio vegetation index adjusted for soil brightness. — Int. J. Rem. Sens. 11: 727–740.

    Article  Google Scholar 

  • McClain, E.P., Pichel, W.G. and Walton, C.C. 1985. Comparative performance of AVHRR-based multichannel sea surface temperatures. — J. Geophys. Res. 90: 11587–11601.

    Article  Google Scholar 

  • McDonald, R.B. and Hall, F.G. 1980. Global crop forecasting. — Science 208: 670–679.

    Article  Google Scholar 

  • Monteith, J.L. 1977. Climate and efficiency of crop production in Britain. — Phil. Trans. Roy. Soc. London (Series B) 281: 277–294.

    Article  Google Scholar 

  • Monteith, J.L. and Unsworth, M.H. 1990. Principles of Environmental Physics. 2d ed. — Edward Arnold, London. 291 pp.

    Google Scholar 

  • Mooney, H.A. and Field, C.B. 1988. Photosynthesis and plant productivity — scaling to the biosphere. — In: Proceedings of Photosynthesis: C.S. French Symposium, Stanford, CA. Alan R. Liss, Inc., New York, pp. 19–44.

    Google Scholar 

  • Mooney, H.A. and Hobbs, R. (eds). 1990. Remote Sensing of Biospheric Functioning. — Springer-Verlag, New York. 312 pp.

    Google Scholar 

  • National Research Council. 1986. Remote Sensing of the Biosphere. — Committee on Planetary Biology, Space Science Board National Academy Press, Washington, DC. 91 pp.

    Google Scholar 

  • Nemani, R.R. and Running, S.W. 1989. Estimation of surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. — J. Clim. Appl. Meteorol. 28: 276–294.

    Article  Google Scholar 

  • Nemani, R.R., Pierce, L.L., Running, S.W. and Goward, S.N. 1993. Developing satellite-derived estimates of surface moisture status. — J. Appl. Meteorol. 32(3): 548–557.

    Article  Google Scholar 

  • Nilson, T. and Peterson, U. 1994. Age dependence of forest reflectance: Analysis of main driving factors. — Rem. Sens. Environ. 48: 319–331.

    Article  Google Scholar 

  • Nilson, T. and Ross, J. 1996. Modeling radiative transfer through forest canopies: Implications for canopy photosynthesis and remote sensing. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 23–60.

    Google Scholar 

  • Njoku, E.G. 1982. Passive microwave remote sensing of the earth from space — a review. — Proc. IEEE 70(7): 728–750.

    Article  Google Scholar 

  • Novoseltsev, Y.P. 1964. Spectral Reflectivity of Clouds (in Russian). Spectrol. Otrazhatel. Oblakov, Tr. Gla: Geofiz. Obs. A.D. Voyykova: 186–197, NASA TT F-328(152).

    Google Scholar 

  • Otterman, J. 1984. Albedo of a forest modeled as a plane with dense protrusions. — J. Clim. Appl. Meteorol. 23: 297–307.

    Article  Google Scholar 

  • Peterson, D.L. 1996. Forest structure and productivity along the Oregon transect. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 173–218.

    Google Scholar 

  • Peterson, D.L. and Waring, R.H. 1994. Overview of Oregon transect ecosystem research project. — Ecol. Appl. 4(2): 211–225.

    Article  Google Scholar 

  • Peterson, D.L., Spanner, M.A., Running, S.W. and Teuber, K.B. 1987. Relationship of Thematic Mapper Simulator data to leaf area index of temperate coniferous forest. — Rem. Sens. Environ. 22: 323–341.

    Article  Google Scholar 

  • Petzold, D.E. and Goward, S.N. 1988. Reflectance spectra of subarctic lichens. — Rem. Sens. Environ. 24: 481–492.

    Article  Google Scholar 

  • Pinker, R.T. 1990. Satellites and our understanding of the surface energy balance. — Palaeogeog. Palaeoclimatol. Palaeoecol. 82: 321–342.

    Article  Google Scholar 

  • Pinker, R.T. and Laszlo, I. 1992a. Global distribution of photosynthetically active radiation as observed from satellites. — J. Clim. 5: 56–65.

    Article  Google Scholar 

  • Pinker, R.T. and Laszlo, I. 1992b. Modeling surface solar irradiance for satellite applications on a global scale. — J. Appl. Meteorol. 31: 194–211.

    Article  Google Scholar 

  • Post, W.M., Peng, T.-H., Emanuel, W.R., King, A.W. and Dale, V.H. 1990. The global carbon cycle. — Am. Sci. 78: 310–326.

    Google Scholar 

  • Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A. and Klooster, S.A. 1993. Terrestrial ecosystem production: A process model based on global satellite and surface data. — Glob. Biogeochem. Cycl. 7(4): 811–841.

    Article  Google Scholar 

  • Prabhakara, C., Dalu, V.G. and Kunde, V.G. 1974. Estimation of sea surface temperature from remote sensing in the 11–13 μrn window range. — J. Geophys. Res. 79(33): 5039–5044.

    Article  Google Scholar 

  • Price, J.C. 1980. The potential of remotely sensed data to infer surface soil moisture and evaporation. — Water Res. Res. 16: 787–795.

    Article  Google Scholar 

  • Price, J.C. 1989. Quantitative aspects of remote sensing in the thermal infrared. — In: Asrar, G. (ed). Theory and Applications of Optical Remote Sensing. J. Wiley and Sons, New York, pp. 578–603.

    Google Scholar 

  • Price, J.C. 1990. Using spatial context in satellite data to infer regional scale evapotranspiration. — IEEE Trans. Geosci. Rem. Sens. 28(5): 940–948.

    Article  Google Scholar 

  • Prihodko, L. 1992. “Estimation of air temperature from remotely sensed observations.” — Master’s thesis, University of Maryland, College Park, MD. 178 pp.

    Google Scholar 

  • Prince, S.D. 1991. A model of regional primary production for use with coarse resolution satellite data. — Int. J. Rem. Sens. 12(6): 1313–1330.

    Article  Google Scholar 

  • Prince, S.D. and Goward, S.N. 1996. Global net primary production: The remote sensing approach. — J. Biogeog. Lett. (in press).

    Google Scholar 

  • Prince, S.D., Justice, C.O. and Moore, III, B. (eds). 1994. — Monitoring and modelling of terrestrial net and gross primary production. Joint IGBP-DIS-GAIM working paper 1. International Geosphere Biosphere Program Data & Information System, Paris. 56 pp.

    Google Scholar 

  • Prince, S.D., Kerr, Y.H., Goutorbe, J.-P., Lebel, T., Tinga, A., Bessemoulin, P., Brouwer, J., Dolman, A.J., Engman, E.T., Gash, J.H.C., Hoepffner, M., Kabat, P., Monteny, B., Said, F., Sellers, P.J. and Wallace, J. 1995. Geographical, biological, and remote sensing aspects of the Hydrologic Atmospheric Pilot Experiment in the Sahel (HAPEX-Sahel). — Rem. Sens. Environ. 51: 215–234.

    Article  Google Scholar 

  • Rasool, S.I. (ed). 1987. Potential of remote sensing for the study of global change. — Adv. Space Res. 7(1): 1–90.

    Google Scholar 

  • Rosenzweig, C. and Dickerson, R. 1986. Climate-vegetation interactions. — In: Proceedings of a Workshop at NASA Goddard Space Flight Center OIES-2, Office of Interdisciplinary Earth Studies, UCAR, Boulder, CO. 156 pp.

    Google Scholar 

  • Rosswall, T., Woodmansee, R.G. and Risser, P.G. (eds). 1988. Scales and Global Change. SCOPE 35. — J. Wiley and Sons, New York. 355 pp.

    Google Scholar 

  • Ruimy, A., Dedieu, G. and Saugier, B. 1994. Methodology for the estimation of terrestrial net primary productivity from remotely sensed data. — J. Geophys. Res. 99(D3): 5263–5283.

    Article  Google Scholar 

  • Running, S.W., Justice, CO., Salomonson, V., Hall, D., Barker, J., Kaufman, J., Strahler, A.H., Huete, A.R., Muller, J.-P., Vanderbilt, V., Wan, Z.M., Teillet, P. and Carneggie, D. 1994. Terrestrial remote sensing science and algorithms planned for EOS MODIS. — Int. J. Rem. Sens. 15(17): 3587–3620.

    Article  Google Scholar 

  • Runyon, J., Waring, R.H., Goward, S.N. and Welles, J.M. 1994. Environmental limits on above-ground production: Observations from the Oregon transect. — Ecol. Appl. 4(2): 226–238.

    Article  Google Scholar 

  • Saint, G. 1994. VEGETATION Preparatory Programme: Call for Proposals. — European Joint Research Center, Institute for Remote Sensing Applications, VGT/PS/940721/1. 75 pp.

    Google Scholar 

  • Saunders, R.U. and Knebel, K.T. 1988. An improved method for detecting clear sky and cloudy radiances from AVHRR data. — Int. J. Rem. Sens. 9: 123–150.

    Article  Google Scholar 

  • Schiffer, R.A. and Rossow, W.B. 1983. The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. — Bull. Am. Meteorol. Soc. 64: 779–784.

    Google Scholar 

  • Schmetz, J. 1991. On the retrieval of surface radiation budget components from satellites. — Palaeogeog. Palaeoclimatol. Palaeoecol. (Global and Planetary Change Section) 90: 17–24.

    Google Scholar 

  • Schneider, S.R. and McGinnis, D.F., Jr. 1982. The NOAA AVHRR: A new sensor for monitoring crop growth. — In: Proceedings of the Tenth Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, IN, pp. 211–223.

    Google Scholar 

  • Scientific Committee on Problems of the Environment (ed). 1984. The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement with Remote Sensing. SCOPE Report. — J. Wiley and Sons, New York. 247 pp.

    Google Scholar 

  • Seguin, B. and Itier, B. 1983. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data. — Int. J. Rem. Sens. 4: 371–383.

    Article  Google Scholar 

  • Sellers, P.J. 1985. Canopy reflectance, photosynthesis, and transpiration. — Int. J. Rem. Sens. 6: 1335–1371.

    Article  Google Scholar 

  • Sellers, P.J. 1991. Modeling and observing land-surface-atmosphere interactions on large scales. — Surv. Geophy. 12: 85–114.

    Article  Google Scholar 

  • Sellers, P.J., Hall, F.G., Asrar, G., Strebel, D.E. and Murphy, R.E. 1988. The first ISLSCP field experiment. — Bull. Am. Meteorol. Soc. 69: 22–27.

    Article  Google Scholar 

  • Sellers, P.J., Hall, F.G., Margolis, H., Kelly, B., Baldocchi, D., den Hartog, G., Chilar, J., Ryan, M.G., Goodison, B., Crill, P., Ranson, J.K., Lettenmaier, D. and Wickland, D. 1995. The Boreal Ecosystem-Atmosphere Study (BOREAS): An overview and early results from the 1994 field year. — Bull. Am. Meteorol. Soc. 76(9): 1549–1577.

    Article  Google Scholar 

  • Sellers, W.D. 1965. Physical Climatology. — University of Chicago Press, Chicago. 272 pp.

    Google Scholar 

  • Smith, J.A., Ranson, K.J., Nguyen, D. and Balick, L. 1985. Thermal vegetation canopy model studies. — Rem. Sens. Environ. 11: 31–26.

    Google Scholar 

  • Smith, R.C.G. and Choudhury, B.J. 1991. Analysis of normalized difference and surface temperature observations over southeastern Australia. — Int. J. Rem. Sens. 12(10): 2021–2044.

    Article  Google Scholar 

  • Spanner, M., Johnson, L., Miller, J., McCreight, R., Freemantle, J., Runyon, J. and Gong, P. 1994. Remote sensing of seasonal leaf area index across the Oregon transect. — Ecol. Appl. 4(2): 258–271.

    Article  Google Scholar 

  • Stanhill, G. 1970. Some results of helicopter measurements of the albedo of different land surfaces. — Sol. Ener. 13: 59–66.

    Article  Google Scholar 

  • Stoner, E.R. and Baumgardner, M.F. 1981. Characteristic variations in reflectance of surface soils. — Soil Sci. Soc. Am. J. 45(6): 1161–1165.

    Article  Google Scholar 

  • Stowe, L.L., McClain, E.P., Carey, R., Pellegrino, P., Gutman, G., Davis, P., Long, C. and Hart, S. 1991. Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data. — Adv. Space Res. 3: 51–54.

    Article  Google Scholar 

  • Suits, G.H. 1972. The calculation of the directional reflectance of a vegetative canopy. — Rem. Sens. Environ. 2: 117–125.

    Article  Google Scholar 

  • Susskind, J., Rosenfield, J., Reuter, D. and Chahine, M. 1984. Remote sensing of weather and climate parameters from HIRS2-MSU on TIROS-N. — J. Geophys. Res. 89: 4677–4697.

    Article  Google Scholar 

  • Swain, P.H. and Davis, S.M. (eds). 1978. Remote Sensing: The Quantitative Approach. — McGraw-Hill Book Company, New York. 396 pp.

    Google Scholar 

  • Tanré, D., Holben, B.N. and Kaufman, Y.J. 1992. Atmospheric correction algorithm for NOAA-AVHRR products: Theory and application. — IEEE Trans. Geosci. Rem. Sens. 30(2): 231–248.

    Article  Google Scholar 

  • Tans, P.P., Fung, I.Y. and Takahashi, T. 1990. Observational constraints on the global atmospheric CO2 budget. — Science 247: 1431–1438.

    Article  PubMed  CAS  Google Scholar 

  • Tarpley, J.D. 1979. Estimating incident solar radiation at the surface from geostationary satellite data. — J. Appl. Meteorol. 18: 1172–1181.

    Article  Google Scholar 

  • Terri, J.A. and Stone, L.G. 1976. Climatic patterns and the distribution of C4 grasses in North America. — Oecologia 23: 1–12.

    Google Scholar 

  • Thomas, W.L., Jr. (ed). 1966. Man’s Role in Changing the Face of the Earth. — University of Chicago Press, Chicago. 1193 pp.

    Google Scholar 

  • Tieszen, L.L. and Johnson, P.L. 1968. Pigment structure of some arctic tundra communities. — Ecology 49(2): 370–373.

    Article  Google Scholar 

  • Townshend, J.R.G. and Tucker, C.J. 1981. Utility of AVHRR NOAA-6 and NOAA-7 for vegetation mapping. — In: Matching Remote Sensing Technologies and Applications. Remote Sensing Society, London, pp. 97–107.

    Google Scholar 

  • Townshend, J.R.G. and Justice, C.O. 1986. Analysis of the dynamics of African vegetation using the normalized difference vegetation index. — Int. J. Rem. Sens. 7: 1189–1207.

    Article  Google Scholar 

  • Townshend, J.R.G. and Justice, C.O. 1990. The spatial variation of vegetation changes at very coarse scales. — Int. J. Rem. Sens. 11: 149–157.

    Article  Google Scholar 

  • Townshend, J.R.G., Justice, CO., Li, W., Gurney, C. and McManus, J. 1991. Global land cover classification by remote sensing: Present capabilities and future possibilities. — Rem. Sens. Environ. 35: 243–255.

    Article  Google Scholar 

  • Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. — Rem. Sens. Environ. 8: 127–150.

    Article  Google Scholar 

  • Tucker, C.J., Holben, B.N., Elgin, J.H., Jr. and McMurtrey, J.E. 1981. Remote sensing of total dry-matter accumulation in winter wheat. — Rem. Sens. Environ. 11: 171–189.

    Article  Google Scholar 

  • Tucker, C.J., Townshend, J.R.G. and Goff, T.E. 1985. African land-cover classification using satellite data. — Science 227: 369–375.

    Article  PubMed  CAS  Google Scholar 

  • Turner, B.L., II. 1989. The human causes of global environmental change. — In: DeFries, R.S. and Malone, T. (eds). Global Change and Our Common Future: Papers from a Forum. National Academy Press, Washington, DC, pp. 90–99.

    Google Scholar 

  • Turner, B.L., II, Clark, W.C., Kates, R.W., Richards, J.F., Matthews, J.T. and Meyer, W.B. (eds). 1990. The Earth Transformed by Human Action: Global and Regional Changes in the Biosphere of the Last 300 Years. — Cambridge University Press, Cambridge, UK. 713 pp.

    Google Scholar 

  • Van Wijk, W.R. and De Vries, D.A. 1963. Periodic temperature variations. — In: Van Wijk, W.R. (ed). Physics of Plant Environment. North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  • Verhoeff, W. 1984. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. — Rem. Sens. Environ. 16: 125–141.

    Article  Google Scholar 

  • Vitousek, P.M., Ehrlich, P.R., Ehrlich, A.H. and Matson, P.A. 1986. Human appropriation of the products of photosynthesis. — Bioscience 36: 368–373.

    Article  Google Scholar 

  • Waring, R.H. and Peterson, D.L. 1994. The Oregon Transect Ecosystems Research (OTTER): Summary and overview. — Ecol. Appl. 4(2): 211–225.

    Article  Google Scholar 

  • Watson, K. 1973. Periodic heating of a layer over a semi-infinite solid. — J. Geophys. Res. 78: 5904–5910.

    Article  Google Scholar 

  • Whittaker, R.H. and Likens, G.E. 1975. The biosphere and man. — In: Lieth, H. and Whittaker, R. (eds). Primary Productivity of the Biosphere. Springer-Verlag, New York, pp. 306–328.

    Google Scholar 

  • Williams, D.L. 1991. A comparison of spectral reflectance properties at the needle, branch and canopy level for selected conifer species. — Rem. Sens. Environ. 35: 79–91.

    Article  Google Scholar 

  • Wolfe, W.L. (ed). 1965. Handbook of Military Infrared Technology. — Office of Naval Research, Department of the Navy, Washington, DC. 906 pp.

    Google Scholar 

  • Wooley, J.T. 1971. Reflectance and transmittance of light by leaves. — Plant Physiol. 47: 656–662.

    Article  Google Scholar 

  • Yates, H., Strong, A., McGinnis, D., Jr. and Tarpley, D. 1986. Terrestrial observations from NOAA operational satellites. — Science 231: 463–470.

    Article  PubMed  CAS  Google Scholar 

  • Yefimova, N.A. 1971. Geographical distribution of the sums of photosynthetically active radiation. — Soviet Geog. 17-66–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goward, S.N., Dye, D.G. (1997). Global Biospheric Monitoring with Remote Sensing. In: Shimoda, H., Gholz, H.L., Nakane, K. (eds) The Use of Remote Sensing in the Modeling of Forest Productivity. Forestry Sciences, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5446-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5446-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6290-9

  • Online ISBN: 978-94-011-5446-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics