Skip to main content

Numerical Study of Auto-Ignition and Combustion in Supersonic Hydrogen-Air Mixing Layer

  • Conference paper
IUTAM Symposium on Combustion in Supersonic Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 39))

Abstract

Auto-ignition and combustion in supersonic mixing layers is of particular importance because of applications in scramjet combustors. Among other problem, a too small growth rate in high-speed mixing layers for obtaining a good combustion efficiency over a reasonable combustion chamber length. Numerical simulations are required to understand how is auto-ignition phenomena with the induced combustion regime. Recently a few studies were devoted to the modelling of supersonic reacting mixing layers [1], [2], [3], [4]. This paper is a contribution for the understanding of the influence of coherent structures in the reactive mixing layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Vuillermoz, E.S. Oran, and K. Kailasanath. The effect of the chemical reaction time on a supersonic reactive mixing layer. 24 Symposium (International) on Combustion The Combustion Institute, Sydney, 1992.

    Google Scholar 

  2. O.H. Planche and W.C. Reynolds. Heat release effect on mixing in supersonic reacting free shear-layers. AIAA Paper 92-0092, 1992.

    Google Scholar 

  3. R.F. Burr and Dutton J.C. Numerical simulations of compressible and reacting temporal mixing layers and implications for modeling. AIAA 91-1718, 1991.

    Google Scholar 

  4. L.F. Figueira Da Silva, B. Deshaies, and M. Champion. Some specific aspects of combustion in supersonic H 2-Air laminar mixing layers. Combustion Science and Technology, 89(5–6):317, 1993.

    Article  Google Scholar 

  5. J.L. Hall. An experimental investigtion of structure, mixing and combustion in compressible shear layers. PhD thesis, G.A.L.C.I.T., Caltech, 1991.

    Google Scholar 

  6. D. Papamoschou and Roschko A. The compressible turbulent shear layer: an experimental study. Journal of Fluid Mechanics, 197:453–477, 1988.

    Article  ADS  Google Scholar 

  7. H.C. Yee. Construction of explicit and implicit symmetric TVD schemes and their applications. Journal of Computational Physics, 68:151–179, 1987.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. H.C. Yee. A class of high-resolution explicit and implicit shock-capturing methods. Computational fluid dynamics, march 1989, rhode-st-genèse, belgium, Von Karman Institute for fluid dynamics, Lecture Series 1989-04, 1989.

    Google Scholar 

  9. A. Harten. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 49, 1985.

    Google Scholar 

  10. P.L. Roe. Some contribution to the modelling of discontinuous flows. In Lectures in Applied Mathematics, pages 163–194, Providence, RI, 1985. American Mathematical Society.

    Google Scholar 

  11. P. Colella and P.R. Woodward. The piecewise parabolic method (PPM) for gas dynamical simulations. Journal of Computational Physics, 54:174–201, 1984.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. B. Van Leer. Towards the ultimate conservation difference scheme V, a second-order sequel to Godunov’s method. Journal of Computational Physics, 32:101–136, 1979.

    Article  ADS  Google Scholar 

  13. P.-J. Lu and K.-C. Wu. Assessment of total variation diminishing shcemes in compressible mixing flow computations. AIAA Journal, 30(4), April 1992.

    Google Scholar 

  14. L.F. Figueira Da Silva. Etude numérique de l’allumage et du développement de la combustion dans une couche limite supersonique. PhD thesis, ENSMA et Faculté des sciences de Poitiers, 1993.

    Google Scholar 

  15. H.G. Im, J.K. Bechtold, and C.K. Law. Analysis of thermal ignition in supersonic flat-plat boundary layers. Journal of Fluid Mechanics, vol.249:99–120, 1993.

    Article  ADS  MATH  Google Scholar 

  16. F.F. Grinstein and K. Kailasanath. Compressibility, exothermicity, and three dimensionality in spacially evolving reactive shear flows. AIAA, Dynamics of gaseous combustion, 151:413–436, 1993.

    Google Scholar 

  17. H.S. Mukunda, B. Sekar, M.H. Carpenter, J.P. Drummond, and A. Kumar. Direct simulation of hight-speed mixing layers. L-16929, NASA TP-3186, 1992.

    Google Scholar 

  18. U. Maas and J. Warnatz. Ignition processes in hydrogen-oxygen mixtures. Combustion and Flame, (74), 1988.

    Google Scholar 

  19. J. Warnatz. Rate Coefficients in the C/H/O/ System. Combustion chemistry. Gardiner, W.C., Jr., New York, Springer-Verlagi edition, 1984.

    Google Scholar 

  20. P. Clavin, L. He, and B. Larrouturou. Etude des phénomènes d’allumage en phase gaseuse des melanges H 2-O 2-gaz de poudre dans les conditions des moteurs fusees criotéchniques. In Combustion dans les moteurs fusées, 1er Colloque du P.R.C. CNRS/SEP/CNES, 1988.

    Google Scholar 

  21. E.S. Oran, Young, T.R., J.P. Boris, and A. Cohen. Weak and strong ignition. I. Numerical simulation of shock tube experiments. Combustion and Flame, 48(2): 135–148, 1982.

    Article  Google Scholar 

  22. E.S. Oran and J.P. Boris. Weak and strong ignition. II. Sensitivity of the Hydrogen-Oxygen system. Combustion and Flame, 48(2): 149–161, 1982.

    Article  Google Scholar 

  23. R.J. Kee and J.A. Miller. A structured approach to the computational modeling of chemical kinetics and molecular transport in flowing systems. SAND86-8841, Sanclia National Laboratories, 1986.

    Google Scholar 

  24. D.R. Stull and Prophet H. JANAF thermochemical tables, second edition. NSRDS-NBS 37, U.S. Department of Commerce/National Bureau of Standards, June 1971.

    Google Scholar 

  25. M. Baum, T. Poinsot, and D. Thévenin. Accurate boundary conditions for multi-component reactive flows. Journal of computational physics, 116(2):247–261, 1994.

    Article  Google Scholar 

  26. M.B. Jiles. Nonreflecting Boundary Conditions for Euler Equation Calculations. AIAA Journal, 28(12):2050–2058, December 1990.

    Article  ADS  Google Scholar 

  27. J.L. Montagne, H.C. Yee, and Vinokur M. Comparative study of high-resolution shock-capturing schemes for a real gas. AIAA Journal, 27(10): 1332–1346, 1989.

    Article  MathSciNet  ADS  Google Scholar 

  28. R.W. MacCormack. The effect of viscosity in hypervelocity impact cratering. AIAA Paper 69-354, Cincinatti, Ohio, April 31–Mai 2 1969.

    Google Scholar 

  29. E. Oran and J.P. Boris. Numerical simulation of reacting flows. Elsevier, New-York — Amsterdam — London, 1987.

    Google Scholar 

  30. G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5:506–517, 1968.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. P. Deuflhard. Recent progress in extrapolation methods for ordinary differential equations. SIAM Rev., 27:505–535, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  32. P.E. Dimotakis. Turbulent free shear layer mixing. AIAA 89-0262, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Stoukov, A., Gorokhovski, M., Vandromme, D. (1997). Numerical Study of Auto-Ignition and Combustion in Supersonic Hydrogen-Air Mixing Layer. In: Champion, M., Deshaies, B. (eds) IUTAM Symposium on Combustion in Supersonic Flows. Fluid Mechanics and Its Applications, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5432-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5432-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6285-5

  • Online ISBN: 978-94-011-5432-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics