Skip to main content

A Full Bayesian Approach for Inverse Problems

  • Conference paper
Maximum Entropy and Bayesian Methods

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 79))

Abstract

The main object of this paper is to present some general concepts of Bayesian inference and more specifically the estimation of the hyperparameters in inverse problems. We consider a general linear situation where we are given some data y related to the unknown parameters z by y = Az + n and where we can assign the probability laws p(x|θ), p(y|x,ß), p(ß) and p(θ). The main discussion is then how to infer x,θ and | either individually or any combinations of them. Different situations are considered and discussed. As an important example, we consider the case where θ and | are the precision parameters of the Gaussian laws to whom we assign Gamma priors and we propose some new and practical algorithms to estimate them simultaneously. Comparisons and links with other classical methods such as maximum likelihood are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Box and G.C. Tiao, Bayesian inference in statistical analysis. Addison-Wesley publishing, 1972.

    Google Scholar 

  2. H. Sorenson, Parameter estimation. Marcel Dekker, Inc., 1980.

    Google Scholar 

  3. J. Besag, “Digital image processing: Towards Bayesian image analysis,” Journal of Applied Statistics, vol. 16, no. 3, pp. 395–407, 1989.

    Article  Google Scholar 

  4. P. J. Green, “Bayesian reconstructions from emission tomography data using a modified EM algorithm,” IEEE Transactions on Medical Imaging, vol. 9, pp. 84–93, Mar. 1990.

    Article  Google Scholar 

  5. D. Malec and J. Sedransk, “Bayesian methodology for combining the results from different experiments when the specifications for pooling are uncertain,” Biometrika, vol. 79, no. 3, pp. 593–601, 1992.

    Article  MATH  Google Scholar 

  6. G. Gindi, M. Lee, A. Rangarajan, and Z. I., “Bayesian reconstruction of functional images using anatomical information as priors,” IEEE Transactions on Medical Imaging, vol. MI-12, no. 4, pp. 670–680, 1993.

    Article  Google Scholar 

  7. J. Bernardo and A. Smith, Bayesian Theory. Chichester, England: John Wiley, 1994.

    Book  MATH  Google Scholar 

  8. Barndorff-Nielsen, Information and Exponential Model in Statistics. New-York: John Wiley, 1978.

    Google Scholar 

  9. H. Derin, H. Elliott, R. Cristi, and D. Geman, “Bayes smoothing algorithms for segmentation of binary images modeled by markov random fields,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, p. 4, 1984.

    Article  Google Scholar 

  10. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, p. 2, 1984.

    Article  Google Scholar 

  11. A. Tarantola, Inverse problem theory: Methods for data fitting and model parameter estimation. Amsterdam: Elsevier Science Publishers, 1987.

    MATH  Google Scholar 

  12. J. Skilling, Maximum-Entropy and Bayesian Methods. Dordrecht, The Netherlands: Kluwer Academic Publisher, 1988.

    Google Scholar 

  13. Titterington and Rossi, “Another look at a Bayesian direct deconvolution method”, Signal Processing, vol. 9, pp. 101–106, 1985.

    Article  Google Scholar 

  14. G. Demoment, “Image reconstruction and restoration: Overview of common estimation structure and problems,” IEEE Transactions on Acoustics Speech and Signal Processing, vol. 37, pp. 2024–2036, Dec. 1989.

    Article  Google Scholar 

  15. K.-Y. Liang and D. Tsou, “Empirical Bayes and conditional inference with many nuisance parameters,” Biometrika, vol. 79, no. 2, pp. 261–270, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. E. McCulloch and P. E. Rossi, “Bayes factors for nonlinear hypotheses and likelihood distributions,” Biometrika, vol. 79, no. 4, pp. 663–676, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Idier and Y. Goussard, “Markov modeling for Bayesian restoration of two-dimensional layered structures,” IEEE Transactions on Information Theory, vol. 39, pp. 1356–1373, July 1993.

    Article  MATH  Google Scholar 

  18. A. Mohammad-Djafari, “On the estimation of hyperparameters in Bayesian approach of solving inverse problems,” in Proceedings of IEEE ICASSP, pp. 567–571, 1993.

    Google Scholar 

  19. A. Nallanathan and W. J. Fitzgerald, “Bayesian model selection applied to spatial signal processing,” Proceedings of the IEE, vol. 141, pp. 76–80, Feb. 1994.

    Google Scholar 

  20. J. Diebolt and C. P. Robert, “Estimation of finite mixture distributions through Bayesian sampling,” Journal of Royal Statistical Society B, vol. 56, no. 2, pp. 363–375, 1994.

    MathSciNet  MATH  Google Scholar 

  21. H. Carfantan and A. Mohammad-Djafari, “A Bayesian approach for nonlinear inverse scattering tomographic imaging,” in Proceedings of IEEE ICASSP, vol. IV, pp. 2311–2314, May 1995.

    Google Scholar 

  22. J. Cullum, “The effective choice of the smoothing norm in regularization,” Math. Comp., vol. 33, pp. 149–170, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  23. Titterington, “General structure of regularization procedures in image reconstruction,” As-trononmy and Astrophysics, vol. 144, pp. 381–387, 1985.

    MathSciNet  Google Scholar 

  24. L. Younès, “Estimation and annealing for Gibbsian fields,” Annales de Vinstitut Henri Poincaré, vol. 24, pp. 269–294, Feb. 1988.

    MATH  Google Scholar 

  25. S. Lakshmanan and H. Derin, “Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-11, no. 8, pp. 799–813, 1989.

    Article  Google Scholar 

  26. A. Mohammad-Djafari and J. Idier “Maximum likelihood estimation of the lagrange parameters of the maximum entropy distributions” in Maximum Entropy and Bayesian Methods in Science and Engineering (C. Smith G. Erikson and P. Neudorfer eds.) pp. 131–140 Kluwer Academic Publishers 1991

    Google Scholar 

  27. Thompson, Brown, Kay, and Titterington, “A study of methods of choosing the smoothing parameter in image restoration by regularization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, Apr. 1991.

    Google Scholar 

  28. E. Gassiat, F. Monfront, and Y. Goussard, “On simultaneous signal estimation and parameter identification using a generalized likelihood approach,” IEEE Transactions on Information Theory, vol. IT-38, pp. 157–162, 1992.

    Article  Google Scholar 

  29. T. J. Hebert and R. Leahy, “Statistic-based map image reconstruction from poisson data using Gibbs prior,” IEEE trans. on Signal Processing, vol. 40, pp. 2290–2303, Sept. 1992.

    Article  Google Scholar 

  30. C. Bouman and K. Sauer, “Maximum likelihood scale estimation for a class of markov random fields penalty for image regularization,” in Proceedings of IEEE ICASSP, vol. V, pp. 537–540, 1994.

    Google Scholar 

  31. A. N. Iusem and B. F. Svaiter, “A new smoothing-regularization approach for a maximum-likelihood problem,” Applied Mathematics and Optimization, vol. 29, pp. 225–241, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” Journal of Royal Statistical Society B, vol. 39, pp. 1–38, 1977.

    MathSciNet  MATH  Google Scholar 

  33. Vardi and Lee, “From image deblurring to optimal investments maximum likelihood solutions for positive linear inverse problems,” Journal of Royal Statistical Society B, vol. 55, no. 3, pp. 569–612, 1993.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Mohammad-Djafari, A. (1996). A Full Bayesian Approach for Inverse Problems. In: Hanson, K.M., Silver, R.N. (eds) Maximum Entropy and Bayesian Methods. Fundamental Theories of Physics, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5430-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5430-7_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6284-8

  • Online ISBN: 978-94-011-5430-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics