Skip to main content

Nitrogen fixing cyanobacteria as BTi toxin genes delivery system — a biotechnological approach to control malaria mosquitoes

  • Chapter
Modern Agriculture and the Environment

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 71))

  • 460 Accesses

Abstract

Control and prevention of epidemic diseases has been consistently one of the major subjects of public concern. The most efficient way to reach this goal is to control effectively the spreading of disease transmitting vectors such as mosquitoes. With the advance of modern science and technology, the impact of epidemic diseases on civil life has been more or less alleviated by the heavy use of pesticides and related chemicals. Their negative effects on environmental and related ecological problems have gradually been causing public awareness. The wide application of toxic chemical pesticides has become a major source of environmental pollution. Therefore some more powerful and more specific alternative measures must be developed for the same purpose, which will be more safe and friendly to human life and the surrounding environment. Biological control of disease transmitting vectors is generally considered to be permanent, inexpensive and free of environmental hazards. One of such innovative approaches will be discussed in this chapter, i.e., use of genetically engineered cyanobacteria as a BTi toxin to gene delivery system for mosquito control of vector borne diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angsuthanasombat C and Panyim S 1989 Biosysnthesis of 130-kilo-dalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6. Appl. Environ. Microbiol. 55, 2428–2430.

    CAS  Google Scholar 

  • Antarikanonda P 1984 Production of extracellular free amino acids by cyanobacterium Anabaena siamensis. Curr. Microbiol. 11, 191–196.

    Article  CAS  Google Scholar 

  • Ben-Dov E, Boussiba S and Zaritsky A 1995 Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. J. Bact. 177, 2851–2857.

    CAS  Google Scholar 

  • Boussiba S 1993 Production in tubular reactor of the nitrogen-fixing rice field isolate cyanobacterium Anabaena siamensis for rice farming. Microb. Releases 2, 35–39.

    Google Scholar 

  • Boussiba S 1991 Nitrogen-fixing cyanobacteria: potential uses. Plant and Soil. 137, 177–180

    Article  Google Scholar 

  • Boussiba S 1988 Cyanobacteria as nitrogen biofertilizers: A study with the isolate Anabaena azollae. symbiosis. 6, 129–138.

    Google Scholar 

  • Casida J E 1994 International Conference on Modern Agriculture and the Environment, 2–6 October 1994, Program and Abstract Book, Rehovot, Israel. P A1.

    Google Scholar 

  • Chang C, Yu Y M, Dai S M, Law S K and Gill S S 1993 High-level cryIVD and cytA gene expression in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes. Appl. Environmtl. Microbiol. 59, 815–821.

    CAS  Google Scholar 

  • Chungjatupornchai W 1990 Expression of the mosquitocidal protein genes of Bacillus thuringiensis subsp. israelensis and the herbicide-resistance gene bar in Synechocystis PCC6803. Cur. Microbiol. 21, 283–288.

    Article  CAS  Google Scholar 

  • Clark G A G and Sears M 1991 Mosquito Vector Control and Biology in Latin America — A Symposium. J. Am. Mosquito Control Assoc. 7, 633–645.

    Google Scholar 

  • de Barjac H and Sutherland D J (Eds) 1990 Bacterial Control of Mosquitoes and Black Flies. Rutgers University Press, New Brunswick.

    Google Scholar 

  • De Marsac N T, de la Torre, F and Szulmajster J 1987 Expression of the larvicidal gene of Bacillus sphaericus 159M in the cyanobacterium Anacystis nidulans. Mol. Gen. Genet. 209, 396–398

    Article  Google Scholar 

  • Delecluse A, Charles J-F, Klier A and Rapoport G 1991 J. Bacteriol. 173, 3374–3381.

    CAS  Google Scholar 

  • Douek J, Ranaweera S, Einav M and Zaritsky A 1990 Proc. 1st Asia-Pacific Conf. Entomol., pp 1–7.

    Google Scholar 

  • Douek J, Einav M and Zaritsky A 1992 Molec. Gen. Genet. 232, 162–165.

    Article  CAS  Google Scholar 

  • Elhai J and Wolk C P 1988 Conjugal transfer of DNA to cyanobacteria. Methods Enzymol. 167, 747–754.

    Article  CAS  Google Scholar 

  • Entwistle P F, Cory J S, Bailey M J and Higgs S (Eds) 1993 Bacillus thuringiensis, an Environmental Pesticide: Theory and Practice. Wiley & Sons, New York.

    Google Scholar 

  • Flores E and Wolk C P 1985 Identification of facultatively heterotrophic, N2-fixing cyanobacteria able to receive plasmid vectors from Escherichia coli by conjugation. J Bacteriol. 162, 1339–1341.

    CAS  Google Scholar 

  • Gibbsons A 1992 Moths take the field against biopesticide. Science 254, 646.

    Article  Google Scholar 

  • Golop R and Zaritsky A 1987 Annu. Meeting Israel Soc. Genet, p 18.

    Google Scholar 

  • Hofte H and Whiteley H R 1989 Insecticidal crystal proteins of Bacillus thuringiensis Microbiol. Rev. 53, 242–255.

    CAS  Google Scholar 

  • Houmard J and Tandeau de Marsac N 1988 Cyanobacterial genetic tools: Current status. Methods Enzymol. 167, 808–847.

    Article  CAS  Google Scholar 

  • Ibarra J E and Federici B A 1986 Parasporal bodies of Bacillus thuringiensis subsp. morrisoni (PG14) and Bacillus thuringiensis subsp. israelensis are similar in protein composition and toxicity. FEMS Microbiol. Lett. 34, 79–84.

    CAS  Google Scholar 

  • Kaniga K, Sory M-P, Delor I, Saegerman C, Limet J N and Cornells G R, 1992 Monitoring of Yersinia enterocolitica in murine and bovine feces on the basis of the chromosomally integrated luxAB marker gene. Appl. Environ. Microbiol. 58, 1024–1026.

    CAS  Google Scholar 

  • Lacey L A and Undeen A H 1986 Microbial control of black flies and mosquitoes. Annu. Rev. Entomol. 31, 265–295.

    Article  CAS  Google Scholar 

  • Lahkim-Tsror L, Pascar-Gluzman C, Margalit J and Barak Z 1983 J. Invertebr. Pathol. 41, 104–116.

    Article  CAS  Google Scholar 

  • Lajoie C A, Chen K-C O H and Strom P F 1992 Development and use of field application vectors to express nonadaptive foreign genes in competitive environments. Appl. Environ. Microbiol. 58, 665–663.

    Google Scholar 

  • van Lenteren J C 1994 International Conference on Modern Agriculture and the Environment, 2–6 October 1994, Program and Abstract Book, Rehovot, Israel, p A4.

    Google Scholar 

  • McGaughey W H and Whalon M E 1992 Managing insect resistance to Bacillus thuringiensis toxins. Science 258, 1451–1455.

    Article  CAS  Google Scholar 

  • Muro-Pastor A M, Herreo A and Flores E 1991 Sequence-specific endonucleases from the cyanobacterium Nostoc sp. ATCC 29132. FEMS Microbiol. Lett. 77, 1–4

    Article  CAS  Google Scholar 

  • Murphy R C and Stevens Jr E S 1992 Cloning and expression of the crylVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl. Environ. Microbiol. 58, 1650–1655.

    CAS  Google Scholar 

  • Ohana B, Margalit J and Barak Z 1987 Fate of Bacillus thuringiensis subsp. israelensis under simulated field conditions. Appl. Environ. Microbiol. 53, 828–831.

    CAS  Google Scholar 

  • Poncet S, Delecluse A, Klier A and Rapoport G 1995 Evaluation of synergistic interactions among the Cry IVA, CryIVB, and CryIVD toxic components of B. thuringiensis subsp. israelensis crystals. J. Invertebr. Pathol. 66, 131–135.

    Article  CAS  Google Scholar 

  • Querijero-Pslscpsc N M, Martinez M R and Boussiba S 1990 Mass cultivation of the nitrogen fixing cyanobacterium Gleotrichia natans, indigenous to rice fields. J. Appl. Phycol. 2, 319–325

    Article  Google Scholar 

  • Renqiu K, Xudong X and Yuxiang H 1992 Chin. J. Parasit. Dis. Contr. 5, 821–824.

    Google Scholar 

  • Sambrook J, Fritsch E F and Maniatis T 1989 Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Studier F W and Moffatt B A 1986 Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113–130.

    Article  CAS  Google Scholar 

  • Swanson R V, Zhou J, Leary J A, et al. 1992 Characterization of phycocyanin produced by cpcE and cpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment. J. Biol. Chem. 267, 16146–16154.

    CAS  Google Scholar 

  • Thiel T and Poo H 1989 Transformation of a filamentous cyanobacterium by electroporation. J. of Bacteriol. 171, 5743–5746.

    CAS  Google Scholar 

  • Thomas S P, Zaritsky A and Boussiba S 1990 Ammonium excretion by a methionine sulfoximine resistant mutant of the rice field cyanobacterium Anabaena siamensis. Appl. Environ. Microbiol. 56, 3499–3504.

    CAS  Google Scholar 

  • Vaeck M A, Chungjatup W and Mcintosh L 1988 World Patent 8 806 631. Assignee: Michigan State University and Plant Genetic Systems.

    Google Scholar 

  • Visick J E and Whiteley H R 1991 J. Bacteriol. 173, 1748–1756.

    CAS  Google Scholar 

  • Williams S, Friedrich L, Dincher S, Carozzi H, Keddmann H, Ward E and Ryals J 1992 Chemical regulation of Bacillus thuringiensis. δ-endotoxin expression in transgenic plants. Biotechnology 10, 540–543.

    Article  Google Scholar 

  • Wolk C P, Elhai J, Kuritz T and Holland D 1993 Amplified expression of a transcriptional pattern formed during the development of Anabaena. Molec. Microbiol. 7, 441–445.

    Article  CAS  Google Scholar 

  • Wolk C P, Vonshak A, Kehoe P and Elhai J 1984 Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Proc. Natl. Acad. Sci. USA 81, 1561–1565.

    Article  CAS  Google Scholar 

  • Wu X Q, Xu X, Ben-Dov E, Dahan E, Zaritsky A and Boussiba S 1995a Expression of mosquitocidal Bacillus thuringiensis subsp. israelensis δ-endotoxin genes in the filamentous cyanobacterium Anabaena 7120. Proceeding of third european workshop on the molecular biology of cyanobacteria. Sevilla, Spain, p 38.

    Google Scholar 

  • Wu X Q, Shi D J, Liu X L, Li G B, Wang H J, Qiu Z S, Zhang C Q, Yin L P, Zhao W P, Liu H R, and Boussiba S, 1995b Site-directed integration of NPTII gene into glnA of the chromosome in Anabaena azollae and its effects on morphology, ultrastructure and ammonia secretion of the transformed cells. Chinese J. Bot. (English J.), 7, 43–48.

    Google Scholar 

  • Xudong X, Renqiu K and Yuxiang H 1993 High larvicidal activity of intact cyanobacterium Anabaena sp. PCC 7120 expressing gene 51 and gene 42 of Bacillus sphaericus sp. 2297. FEMS Microbiol. Lett. 107, 247–250.

    Article  Google Scholar 

  • Yoshisue H, Fukada T, Yoshida K-I et al. 1993 Transcriptional regulation of Bacillus thuringiensis subsp. israelensis mosquito larvicidal crystal protein gene cryIVA. J. Bacterial. 175, 2750–2753.

    CAS  Google Scholar 

  • Yoshida K-I, Sen K, Sakai H and Romano T 1992 Effects of Bacillus thuringiensis var. israelensis 20-kDa protein on production of the Bti 130-kDa crystal protein in Escherichia coli. Biosci. Biotech. Biochem. 56, 1429–1433.

    Article  Google Scholar 

  • Zaritsky A, Einav M and Douek J 1990 Abstract, EMBO Workshop on Bacterial Growth and Division.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boussiba, S., Xiaoqiang, W., Zaritsky, A. (1997). Nitrogen fixing cyanobacteria as BTi toxin genes delivery system — a biotechnological approach to control malaria mosquitoes. In: Rosen, D., Tel-Or, E., Hadar, Y., Chen, Y. (eds) Modern Agriculture and the Environment. Developments in Plant and Soil Sciences, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5418-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5418-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6279-4

  • Online ISBN: 978-94-011-5418-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics