Skip to main content

Utilization of scorpion insecticidal neurotoxins and baculoviruses for the design of novel selective biopesticides

  • Chapter

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 71))

Abstract

Public concern over the risks associated with widespread use of insecticidal chemicals has motivated our efforts to develop safer and more effective approaches to pest control. Thus, natural insecticidal compounds derived from venomous animals may serve as rational alternatives. Venoms of arthropods such as scorpions, spiders, braconid and sphecid wasps, reduviid bugs and centipedes (Zlotkin, 1985) which prey on insects, possess anti-insect selective polypeptidic neurotoxins. Such toxins have already shown promise when incorporated into insect pathogens by enhancing their killing efficacy (Chejanovsky et al., 1995; Maeda et al., 1991; Stewart et al., 1991; Tomalski and Miller, 1991). These toxins bind to insect sodium channels (Gordon et al., 1992), modify their properties and disrupt normal neuromuscular functions leading to paralysis and death. Thus, the incorporation of anti-insect selective scorpion toxins into insecticidal microorganisms offers an opportunity to improve and augment current crop protection strategies (Maeda et al., 1991; Stewart et al., 1991; Tomalski and Miller, 1991). In order to minimize biological hazards which may be associated with such a genetic approach and to avoid the possibility of resistance build-up of insect pests, the molecular basis for anti-insect selectivity of these toxins should be clarified. Furthermore, usage of insecticidal toxins should be limited to those revealing the ‘animal group specificity’ phenomenon where a toxin shows activity against a given group of organisms and is not effective against other groups of organisms. In cases where a venomous organism feeds on a given limited group of animals, the ‘animal group specificity’ is manifested already on the level of the whole venom.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barchi R L 1987 Sodium channel diversity: Subtle variations on a complex theme. TINS 10, 221–223.

    CAS  Google Scholar 

  • Bonning B C and Hammock B D 1992 Development and potential of genetically engineered viral insecticides. Biotec. Genet. Engineer Rev. 10, 453–487.

    Google Scholar 

  • Bougis P E, Rochat H and Smith L A 1989 Precursors of Androctonus australis scorpion neurotoxins: Structures of precursors, processing outcomes, and expression of functional recombinant toxin II. J. Biol. Chem. 264, 19259–19265.

    CAS  Google Scholar 

  • Carbonell L F and Miller L K 1987 Baculovirus interaction with non-target organisms: A virus-borne reporter gene is not expressed in two mammalian cell lines. Appl. Environ. Microbiol. 53, 1412–1417.

    CAS  Google Scholar 

  • Carbonell L F, Hodge M R, Tomalski M D and Miller L K 1988 Synthesis of a gene coding for an insect specific scorpion neurotoxin and attempts to express it using baculovirus vectors. Gene 73, 409–418.

    Article  CAS  Google Scholar 

  • Catterral W A 1977 Membrane potential dependent binding of scorpion toxin to the action potential sodium ionophore. Studies with a toxin derivative prepared by lactoperoxidase catalyzed iodination. J. Biol. Chem. 252, 8660–8668.

    Google Scholar 

  • Catterall W A 1980 Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu. Rev. Pharmacol. Toxicol. 20, 15–43.

    Article  CAS  Google Scholar 

  • Catterall W A 1986 Molecular properties of voltage-sensitive sodium channels. Annu. Rev. Biochem. 55, 953–985.

    Article  CAS  Google Scholar 

  • Chejanovsky N, Zilberberg N, Rivkin H, Zlotkin E and Gurevitz M 1995 Functional expression of an alpha anti-insect scorpion neurotoxin in insect cells and lepidopterous larvae. FEBS Lett. 376, 181–184.

    Article  CAS  Google Scholar 

  • Couraud F, Rochat H and Lissitzky S 1978 Binding of scorpion and sea anemone neurotoxins to a common site related to the action potential Na+ ionophore in neuroblastoma cells. Biochem. Biophys. Res. Commun. 83, 1525–1530.

    Article  CAS  Google Scholar 

  • Darbon H, Jover E, Couraud F and Rochat H 1983 α-Scorpion neurotoxin derivatives suitable as potential markers of sodium channels. Int. J. Pept. Protein Res. 22, 179–186

    Article  CAS  Google Scholar 

  • Eitan M, Fowler E, Herrmann R, Duval A, Pelhate M and Zlotkin E 1990 A scorpion venom neurotoxin paralytic to insects that affects sodium current inactivation: Purification, primary structure, and mode of action. Biochemistry 29, 5941–5947.

    Article  CAS  Google Scholar 

  • El Ayeb M, Darbon H, Bahraoui EM, Vargas O and Rochat H 1986a Differential effect of defined chemical modifications of antigenic and pharmacological activities of scorpion α and β toxins. Eur. J. Biochem. 155, 289–294.

    Article  CAS  Google Scholar 

  • El Ayeb M, Bahraoui EM, Granier C and Rochat H (1986b) Use of antibodies specific to define regions of scorpion α-toxin to study its interaction with its receptor site on the sodium channels. Biochemistry 25, 6671–6678.

    Article  Google Scholar 

  • Elliot M 1986 In Neuropharmacology and Pesticide Action. Eds M G Ford, G G Lunt, R C Reay and P N R Usherwood. pp 498–500. Elfis Horwood, UK.

    Google Scholar 

  • Endean R and Rudkin C 1963 Studies of the venoms of some Conidae. Toxicon 1, 49–64.

    Article  Google Scholar 

  • Engelhard E K, Kam-Morgan L N W, Washburn O J and Volkman L E 1994 The insect tracheal system: A conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus. Proc. Natl. Acad. Sci. USA 91, 3224–3227.

    Article  CAS  Google Scholar 

  • Entwistle P F and Evans H F 1985 Viral control. In Comprehensive Insect Physiology, Biochemistry and Pharmacology. Eds L I Gilbert and G A Kerkut. Vol. 12, pp 347–412. Pergamon Press, Oxford.

    Google Scholar 

  • Fontecilla-Camps J C, Almassy R J, Suddath F L and Bugg C E 1982 The three-dimensional structure of scorpion neurotoxins. Toxicon 20, 1–7.

    Article  CAS  Google Scholar 

  • Fontecilla-Camps J C, Habersetzer-Rochat C and Rochat H 1988 Orthorhombic crystals and three-dimensional structure of the potent toxin II from the scorpion Androctonus australis Hector. Proc. Natl. Acad. Sci. USA 85, 7443–7447.

    Article  CAS  Google Scholar 

  • Frontali N and Grasso A 1964 Separation of three toxicologically different protein components from the spider Latrodectus tredecinquttatus. Arch. Biochem. Biophys. 106, 213–218.

    Article  CAS  Google Scholar 

  • Gordon D 1990 Ion channels in nerve and muscle cells. Curr. Opin. Cell Biol. 2, 695–707.

    Article  CAS  Google Scholar 

  • Gordon D and Zlotkin E 1993 Binding of an α scorpion toxin to insect sodium channels is not dependent on membrane potential. FEBS Lett. 315, 125–128.

    Article  CAS  Google Scholar 

  • Gordon D, Moskowitz H, Eitan M, Warner C, Catterall W A and Zlotkin E 1992 Localization of receptor sites for insect selective toxins on sodium channels by site directed antibodies. Biochemistry 31, 7622–7628.

    Article  CAS  Google Scholar 

  • Granados R R and Lawler K A 1981 In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 108, 297–308.

    Article  CAS  Google Scholar 

  • Gurevitz M, Urbach D, Zlotkin E and Zilberberg N 1991 Nucleotide sequence and structure analysis of a cDNA encoding an alpha insect toxin from the scorpion Leiurus quinquestriatus hebraeus. Toxicon 29, 1270–1272.

    Article  CAS  Google Scholar 

  • Gurevitz M and Zilberberg N 1994 Advances in molecular genetics of scorpion neurotoxins. J. Toxicol. Toxin Rev. 13, 65–100.

    CAS  Google Scholar 

  • Hammock B D, Bonning B C, Possee R D, Hanzlik T N and Maeda S 1990 Expression and effects of juvenile hormone esterase in a baculovirus vector. Nature 344, 458–461.

    Article  CAS  Google Scholar 

  • Heinz K M, McCutchen B F, Herrmann R, Parrella M P and Hammock B D 1995 Direct effects of recombinant nuclear polyhedrosis viruses on selected non-target organisms. J. Econ. Entomol. 88, 259–264.

    CAS  Google Scholar 

  • Herrmann R, Moskowitz H, Zlotkin E and Hammock B D 1995 Positive cooperativity among insecticidal scorpion neurotoxins. Toxicon 33, 1099–1102.

    Article  CAS  Google Scholar 

  • Hoover K, Schultz C M, Lane S S et al. 1995 Reduction in damage to cotton plants by a recombinant baculovirus that knocks moribund larvae of Heliothis virescens off the plant. Biol. Control 5, 419–426.

    Article  Google Scholar 

  • Huber J 1986 Use of baculoviruses in pest management programs. In The Biology of Baculoviruses. Eds R R Granados and B A Federici. Vol. II, pp 181–202. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Kharrat R, Darbon H, Rochat H and Granier C 1989 Structure/activity relationships of scorpion α-toxins. Eur. J. Biochem. 181, 381–390.

    Article  CAS  Google Scholar 

  • Luckow V A and Summers M D 1988 Trends in the development of baculovirus expression vectors. Bio/Technology 6, 47–55.

    Article  CAS  Google Scholar 

  • Maeda S 1989 Increased insecticidal effect by recombinant baculovirus carrying a synthetic diuretic hormone gene. Biochem. Biophys. Res. Commun. 165, 1177–1183.

    Article  CAS  Google Scholar 

  • Maeda S, Volrath S L, Hanzlik T N et al. 1991 Insecticidal effects of an insect-specific neurotoxin expressed by a recombinant baculovirus. Virology 164, 777–780.

    Article  Google Scholar 

  • Martignoni M E and Iwai P J 1986 Catalog of Viral Diseases of Insects, Mite and Ticks. USDA Forest Service PNW-195. USGPO, Washington, DC.

    Google Scholar 

  • Martin-Eauclaire M-F, Sogaard M, Ramos C, Cestele S, Bougis P E and Svensson B 1994 Production of active, insect-specific scorpion neurotoxin in yeast Eur. J. Biochem. 223, 637–645.

    CAS  Google Scholar 

  • Matthews R E F 1982 Classification and nomenclature of viruses. Fourth Report of the International Committee on Taxonomy of Viruses. Intervirology 17, 1–199.

    Article  Google Scholar 

  • McCutchen B F, Choudary P V, Crenshaw R et al. 1991 Development of a recombinant baculovirus expressing an insect-selective neurotoxin: Potential for pest control. Bio/Technology 9, 848–852.

    Article  CAS  Google Scholar 

  • McCutchen B F, Betana M D, Hoover R, Herrmann R and Hammock B D 1996 Interactions of recombinant and wild-type baculoviruses with classical insecticides and pyrethroid-resistant tobacco budworm (Lepidoptera, Noctuidae). J. Econ. Entomol. (in press)

    Google Scholar 

  • Merryweather A T, Weyer U, Harris M P G, Hirs M, Booth T and Possee R D 1990 Construction of genetically engineered baculovirus insecticides containing the Bacillus thuringiensis ssp. Kurstaki HD-73 delta endotoxin. J. Gen. Virol. 71, 1535–1544.

    Article  CAS  Google Scholar 

  • Mikou A, Laplante S R, Guittet E, Lallemand J Y, Martin-Eauclaire M F and Rochat H 1992 Toxin III of the scorpion Androctonus australis Hector: Proton nuclear magnetic resonance assignments and secondary structure. J. Biomolec. NMR 2, 57–70.

    Article  CAS  Google Scholar 

  • Miller L K, Lingg A J and Bulla L A 1983 Bacterial, viral and fungal insecticides. Science 219, 715–721.

    Article  CAS  Google Scholar 

  • Miller L K 1988 Baculoviruses as gene expression vectors. Annu. Rev. Microbiol. 42, 177–199.

    Article  CAS  Google Scholar 

  • Moskowitz H, Herrmann R, Zlotkin E and Gordon D 1994 Variability among insect sodium channels revealed by selective neurotoxins. Insect Biochem. Molec. Biol. 24, 13–19.

    Article  CAS  Google Scholar 

  • O’Reilly D R and Miller L K 1991 Improvement of a baculovirus pesticide by deletion of the EGT gene. Bio/Technology 9, 1086–1089.

    Article  Google Scholar 

  • Pashkov V S, Maiorov V N, Bystrov V F, Hoang A N, Volkova T M and Grishin E V 1988 Solution spatial structure of ‘long’ neurotoxin M9 from the scorpion Buthus eupeus by 1H-NMR spectroscopy. Biophys. Chem. 31, 121–133.

    Article  CAS  Google Scholar 

  • Pelhate M and Zlotkin E 1981 Voltage-dependent slowing of the turn off of Na+ current in the cockroach giant axon induced by the scorpion venom ‘insect toxin’. J. Physiol. 319, 30–31.

    Google Scholar 

  • Piek T and Spanjer W 1986 In Venoms of the Hymenoptera. Ed. T Piek. pp 161–308. Academic Press, London.

    Google Scholar 

  • Ray R and Catterral W A 1978 Membrane potential dependent binding of scorpion toxin to the action potential sodium ionophore. Studies with a 3(4-hydroxy 3-[125]iodophenyl) propionyl derivative. J. Neurochem. 31, 397–407.

    Article  CAS  Google Scholar 

  • Rochat H, Bernard P and Couraud F 1979 Scorpion toxins: Chemistry and mode of action. In Advances in Cytopharmacology. Eds B Ceccarelli and F Clementi. Vol. 3, pp 325–334. Raven Press, New York.

    Google Scholar 

  • Russell R M, Robertson J L and Savin N E 1977 POLO: A new computer program for probit analysis. Bull. Entomol. Soc. Am. 23, 209–213.

    Google Scholar 

  • Smith G E, Summers M D and Fraser M J 1983 Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3, 2156–2165.

    CAS  Google Scholar 

  • Stewart L M D, Hirst M, Ferber M L, Merryweather A T, Cayley P J and Possee R D 1991 Construction of an improved baculovirus insecticide containing an insect-specific toxin gene. Nature 352, 85–88.

    Article  CAS  Google Scholar 

  • Summers M D, Engler R, Falcon L A and Vail P 1975 Baculoviruses for Insect Pest Control: Safety Considerations. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Tomalski M D and Miller L K 1991 Insect paralysis by baculovirus-mediated expression of a mite neurotoxin gene. Nature 352, 82–85.

    Article  CAS  Google Scholar 

  • Vargas O, Martin M F and Rochat H 1987 Characterization of six toxins from the venom of the Moroccan scorpion Buthus occitanus mardochei. Eur. J. Biochem. 162, 589–599.

    Article  CAS  Google Scholar 

  • Zilberberg N and Gurevitz M 1993 Rapid isolation of full length cDNA clones by ‘inverse PCR’. Purification of a scorpion cDNA family encoding α-neurotoxins. Anal. Biochem. 209, 203–205.

    Article  CAS  Google Scholar 

  • Zilberberg N, Gordon D, Pelhate M et al. 1996 Functional expression and genetic modification of an alpha scorpion neurotoxin. Biochemistry 35, 10215–10222.

    Article  CAS  Google Scholar 

  • Zlotkin E 1983 Insect selective toxins derived from scorpion venoms: An approach to insect neuropharmacology. Insect Biochem. 13, 219–236.

    Article  CAS  Google Scholar 

  • Zlotkin E 1985 In Comprehensive Insect Physiology, Biochemistry and Pharmacology. Eds G A Kerkut and L I Gilbert. Vol. 10, pp 499–546. Pergamon, Oxford.

    Google Scholar 

  • Zlotkin E 1988 In Comparative Invertebrate Neurochemistry. Eds G G Lunt and R Wolsen. pp 256–324. Croom Helm, London.

    Chapter  Google Scholar 

  • Zlotkin E, Rochat H, Kupeyan C, Miranda F and Lissitzky S 1971 Purification and properties of the insect toxin from the venom of the scorpion Androctonus australis Hector. Biochimie (Paris) 53, 1073–1078.

    Article  CAS  Google Scholar 

  • Zlotkin E, Eitan M, Bindokas V P et al. 1991 Functional duality and structural uniqueness of depressant insect-selective neurotoxins. Biochemistry 30, 4814–4821.

    Article  CAS  Google Scholar 

  • Zlotkin E, Gurevitz M, Fowler E and Adams M E 1993 Depressant insect selective neurotoxins from scorpion venom: Chemistry, action and gene cloning. Arch. Insect Biochem. Physiol. 22, 55–73.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gurevitz, M. et al. (1997). Utilization of scorpion insecticidal neurotoxins and baculoviruses for the design of novel selective biopesticides. In: Rosen, D., Tel-Or, E., Hadar, Y., Chen, Y. (eds) Modern Agriculture and the Environment. Developments in Plant and Soil Sciences, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5418-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5418-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6279-4

  • Online ISBN: 978-94-011-5418-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics