Skip to main content

Hemorheology and hemorheological mechanisms

  • Chapter
Angiology in Practice

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 187))

  • 96 Accesses

Abstract

Hemorheology is the study of the flow properties of blood. At its heart lies the concept of viscosity which is the rheological parameter most commonly used in discussing resistance to flow. The essential concept is generally understood qualitatively, for example it is common knowledge that it is more difficult to pour or stir treacle than water because the former is the more viscous. For the rheologist, however, such a qualitative feel for viscosity is not enough and an ability to quantify it is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whitmore RL. Rheology of the circulation. Oxford: Pergamon Press, 1968.

    Google Scholar 

  2. Rampling MW. Effects of blood rheology on cardiac output. In: Salmasi AM, Iskandrian AS (eds), Cardiac output and regional blood flow in health and disease. Dordrecht: Kluwer, 1993:107–124.

    Chapter  Google Scholar 

  3. Lowe GDO. Should plasma viscosity replace the ESR? Br J Haematol 1994; 86:6–11.

    Article  PubMed  CAS  Google Scholar 

  4. International Committee for Standardisation in Haematology. Recommendation for the selected method for the measurement of plasma viscosity. J Clin Path 1984; 37:1147–1152.

    Article  Google Scholar 

  5. Harkness J. The viscosity of human blood plasma; its measurement in health and disease. Biorheology 1971; 8:171–193.

    PubMed  CAS  Google Scholar 

  6. Rampling MW, Feher MD, Sever PS, Elkeles RS. Hemorheological disturbances in non-insulin-dependent diabetes and the effects of concomitant hypertension. Clin Hemorheol 1989; 9:101–107.

    Google Scholar 

  7. Jay RH, Rampling MW, Betteridge DJ. Abnormalities of blood rheology in familial hyper-choesterolaemia: effects of treatment. Atherosclerosis 1990; 85:249–256.

    Article  PubMed  CAS  Google Scholar 

  8. Yarnell JWG, Baker IA, Sweetman PM et al. Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease. Circulation 1991; 83:836–843.

    Article  PubMed  CAS  Google Scholar 

  9. Somer T. Rheology of paraproteinaemias and plasma hyperviscosity syndrome. Bailliere’s Clinical Haematology 1987; 1:695–723.

    Article  PubMed  CAS  Google Scholar 

  10. Rampling MW. Red cell aggregation and yield stress. In: Lowe GDO (ed.), Clinical blood rheology. Vol I. Boca Raton: CRC Press, 1988:46–64.

    Google Scholar 

  11. Nash GB, Wemby RB, Sowemimo-Coker SO, Meiselman HJ. Influence of cellular properties on red cell aggregation. Clin Hemorheol 1987; 7:93–108.

    Google Scholar 

  12. Rampling MW, Pearson MJ. Enzymatic degradation of the red cell surface and its effect on rouleaux formation. Clin Hemorheol 1994; 14:531–538.

    Google Scholar 

  13. Goyle KB, Dormandy JA. Abnormal blood viscosity in Raynaud’s phenomenon. Lancet 1976; i:1317–1320.

    Article  Google Scholar 

  14. Usami S. Physiological significance of blood rheology. Biorheology 1982; 19:29–46.

    PubMed  CAS  Google Scholar 

  15. Pries AP, Neuhaus D, Gaehtgens P. Blood viscosity in tube flow: dependence on diameter and haematocrit. Am J Physiol 1992; 263: H1770–H1778.

    PubMed  CAS  Google Scholar 

  16. Lipinsky HH, Usami S, Chien S. In vivo measurement of ‘apparent viscosity’ and microvessel haematocrit in the mesentery of the cat. Microvasc Res 1980; 19:297–319.

    Article  Google Scholar 

  17. Vicaut E, Hou X. In vivo effects of red cell aggregation on microcirculation in rat skeletal muscle. In: Stoltz JF (ed.), Hémorhéologie et agrégation érythocytaire. Vol 4. Cashan, Editione Médicale Internationale, 1994:131–135.

    Google Scholar 

  18. Alonso C, Pries AP, Gaehtgens P. Red blood cell aggregation and its effects on blood flow in the microcirculation. In: Stoltz JF (ed.), Hémorhéologie et agrégation érythocytaire. Vol 4. Cashan, Editione Medicale Internationale, 1994:119–129.

    Google Scholar 

  19. Stuart J. Rheology of the haemolytic anaemias. In: Lowe GDO (ed.), Clinical blood rheology. Vol II. Boca Raton: CRC Press, 1988:43–65.

    Google Scholar 

  20. Chien S. White blood cell rheology. In: Lowe GDO (ed.), Clinical blood rheology. Vol I. Boca Raton: CRC Press, 1988:87–110.

    Google Scholar 

  21. Lipinsky HH, Farrel JC. Microvascular hemodynamics during systemic hemodilution and hemoconcentration. Am J Physiol 1986; 250:H908–H922.

    Google Scholar 

  22. Doyle MP, Galey WR, Walker BR. Reduced erythrocyte deformability alters pulmonary hemodynamics. J Appl Physiol 1989; 67:2593–2599.

    PubMed  CAS  Google Scholar 

  23. Baskurt O, Edremitilioglu M. Myocardial tissue hematocrit: existence of a transmural gradient and alterations after fibrinogen infusions. Clin Hemorheol 1995; 15:97–105.

    Google Scholar 

  24. Dormandy JA. Influence of blood viscosity on blood flow and the effects of low molecular weight dextran. Br Med J 1971; 4:716–719.

    Article  PubMed  CAS  Google Scholar 

  25. Thomas DS, de Boulay GH, Marshall J. Cerebral blood flow in polycythaemia. Lancet 1977;ii: 161–163.

    Article  Google Scholar 

  26. Lowe GDO. Rheological therapy. In: Lowe GDO (ed.), Clinical blood rheology. Vol II. Boca Raton: CRC Press, 1988:1–23.

    Google Scholar 

  27. Maertzdorf WJ, Tangelder GJ, Slaaf DW, Blanco CE. Effects of partial plasma exchange transfusion on cerebral blood flow velocity in polycythaemic preterm, term and small for date newborn infants. Eur J Pediatr 1989; 148:774–778.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rampling, M. (1996). Hemorheology and hemorheological mechanisms. In: Salmasi, AM., Strano, A. (eds) Angiology in Practice. Developments in Cardiovascular Medicine, vol 187. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5406-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5406-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6274-9

  • Online ISBN: 978-94-011-5406-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics