Skip to main content

SPECT imaging in focal epilepsy

  • Chapter

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 29))

Abstract

Epilepsy is a common disorder, with a prevalence in the western world of approximately 1:2001. The great majority of adult epilepsies are focal, most originating in the mesial temporal lobe. About 20% of these epilepsies are not brought under satisfactory control by drug treatment2 and surgical treatment is being considered with increasing frequency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hauser WA, Kurland LT. The epidemiology of epilepsy in Rochester, Minnesota, 1935 through 1967. Epilepsia. 1975;16:1–66.

    Article  PubMed  CAS  Google Scholar 

  2. ShorVon SD. Epidemiology,composition, natural history and genetics of epilepsy. Lancet. 1990;336:93–96.

    Article  Google Scholar 

  3. Mazziotta JC, Engel J. The use and impact of positron computed tomography in epilepsy. Epilepsia. 1984;25:S86–S104.

    Article  PubMed  Google Scholar 

  4. Devous MD, Leroy RF, Homan RW. Single photon emission computed tomography in epilepsy. Semin Nucl Med. 1990;10:349–56.

    Google Scholar 

  5. Horsley V. An address on the origin and seat of epileptic disturbance. Br Med J. 1892;1:693–696.

    Article  PubMed  CAS  Google Scholar 

  6. Gibbs FA, Lennox WG, Gibbs EL. Cerebral blood flow preceding and accompanying seizures in man. Arch Neurol Psychiatr. 1934;32:257–272.

    Google Scholar 

  7. Penfield W. The circulation of the epileptic brain. Res Publ Ass Nerv Ment Dis. 1937;18:605–737.

    Google Scholar 

  8. Penfield W, Von Santha K, Cipriani A. Cerebral blood flow during induced epileptiform seizures in animals and man. J Neurophysiol. 1939;2:257–267.

    Google Scholar 

  9. Dymond AM, Crandall PH. Oxygen availability and blood flow in the temporal lobes during spontaneous epileptic seizures in man. Brain Res. 1976;102:191–196.

    Article  PubMed  CAS  Google Scholar 

  10. Edvinsson L, MacKenzie ET, McCulloch J. Energy generation in the central nervous system. In: Cerebral blood flow and metabolism. New York: Raven Press;1990:153–158.

    Google Scholar 

  11. Roy CW, Sherrington CS. On the regulation of the blood supply of the brain. J Physiol. 1890;11:85–108.

    PubMed  CAS  Google Scholar 

  12. Kuchinsky W, Wahl M. Local chemical and neurogenic regulation of cerebral vascular resistance. Physiol Rev. 1978;58:656–689.

    Google Scholar 

  13. Plum F, Posner JB, Troy B. Cerebral metabolic and circulatory response to induced convulsions in animals. Arch Neurol. 1968;18:1–13.

    Article  PubMed  CAS  Google Scholar 

  14. Posner JB, Plum F, Van Poznak A. Cerebral metabolism during electrically induced seizures in man. Arch Neurol. 1969;20:388–395.

    Article  PubMed  CAS  Google Scholar 

  15. Tanaka S, Sako K, Tanaka T, Nishihara I, Yonemasu Y. Uncoupling of local blood flow and metabolism in the hippocampal CA3 in kainic acid induced limbic seizures. Neuroscience. 1990;36:339–3

    Article  PubMed  CAS  Google Scholar 

  16. Franck G, Sadzot B, Salmon E, et al. Regional cerebral blood flow and metabolic rates in human focal epilepsy and status epilepticus. In:Delgado Escueta, et al. editors. Adv Neurology. 1986;44:935–948.

    Google Scholar 

  17. Duncan R. Epilepsy,cerebral blood flow and cerebral metabolic rate. Cerebrovasc Brain Metab Rev. 1992;4:105–121.

    PubMed  CAS  Google Scholar 

  18. Kuhl DE, Engel J, Phelps ME, Selin C. Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann Neurol. 1980;8:348–360.

    Article  PubMed  CAS  Google Scholar 

  19. Abou Khalil BW, Siegel GJ, Sackellares JC, Gilman S, Hichwa R, Marshall R. Positron emission tomography studies of cerebral glucose metabolism in chronic partial epilepsy. Ann Neurol. 1987;22:480–486.

    Article  PubMed  CAS  Google Scholar 

  20. Engel J, Brown WJ, Kuhl DE, Phelps ME, Mazziotta JC, Crandall PH. Pathological findings underlying focal temporal lobe hypometabolism in partial epilepsy. Ann Neurol. 1982;12:518–528.

    Article  PubMed  Google Scholar 

  21. Theodore WH, Newmark ME, Sato S. [18F]Fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann Neurol. 1983;14:429–437.

    Article  PubMed  CAS  Google Scholar 

  22. Sackellares JC, Siegel JG, Abou-Khalil BW, et al. Differences between lateral and mesial temporal metabolism interictally in epilepsy of mesial temporal origin. Neurology. 1990;40:1420–1426.

    Article  PubMed  CAS  Google Scholar 

  23. Sperling MR, Gur RC, Alavi A, et al. Subcortical metabolic alterations in partial epilepsy. Epilepsia. 1990;31:145–155.

    Article  PubMed  CAS  Google Scholar 

  24. Engel J, Henry TR, Risinger MW, Mazziotta JC, Sutherling WW, Phelps ME. Presurgical evaluation for partial epilepsy: relative contributions of chronic depth electro recordings versus FDG-PET and scalp-sphenoidal ictal EEG. Neurology. 1990;40:1670–1677.

    Article  PubMed  Google Scholar 

  25. Theodore WH, Fishbeinn D, Dubinsky R. Patterns of cerebral glucose metabolism in patients with partial seizures. Neurology. 1988;38:1201–1206.

    Article  PubMed  CAS  Google Scholar 

  26. Holman BL, Lee RGL, Hill TC, Lovett RD, Lister-James J. A comparison of two cerebral perfusion racers. N-Isopropyl I-123 p-iodoamphetamine and I-123 HIPDM, in the human. J Nucl Med. 1984;25:25–30.

    PubMed  CAS  Google Scholar 

  27. Neirinckx RD, Canning LR, Piper IM, et al. Technetium 99m d,l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med. 1987;28:191–202.

    PubMed  CAS  Google Scholar 

  28. Rowe CC, Bercovic SF, Sia STB, et al. Localisation of epileptic foci with postictal single photon emission computed tomography. Ann Neurol. 1989;26:660–668.

    Article  PubMed  CAS  Google Scholar 

  29. Stefan H, Pawlik G, Bocher-Schwartz HG, et al. Functional and morphological abnormalities in temporal lobe epilepsy: a comparison of interictal and ictal EEG, CT, MRI, SPECT and PET. J Neurol. 1987;234:377–384.

    Article  PubMed  CAS  Google Scholar 

  30. Ryding E, Rosen I, Elmqvist D, Ingvar DH. SPECT measurements with 99Tc HMPAO in focal epilepsy. J Cerebr Blood Flow Metab. 1988;8:S95-S100.

    Google Scholar 

  31. Bonte FJ, Devous MD, Stokely EM, Homan RW. Single photon tomographic determination of regional cerebral blood flow in epilepsy. Am J Neuroradiol. 1983;4:544–546.

    PubMed  CAS  Google Scholar 

  32. Podreka I, Lang W, Suess E, et al. Hexamethyl-propylene-amine-oxime (HMPAO) single photon emission computed tomography (SPECT) in epilepsy. Brain Topography. 1988;1:55–60.

    Article  PubMed  CAS  Google Scholar 

  33. Duncan R, Patterson J, Bone I, Wyper DJ, McGeorge AP. Tc99m HMPAO single photon emission computed tomography in temporal lobe epilepsy. Acta Neurol Scand. 1990;81:287–293.

    Article  PubMed  CAS  Google Scholar 

  34. Duncan R, Patterson J, Hadley DM, Bone I, Wyper D. SPECT in temporal lobe epilepsy: ictal and interictal studies. Current problems in epilepsy, Vol. 6. London: Libbey;1990.

    Google Scholar 

  35. Duncan R, Patterson J, Hadley DM, et al. CT, MR and SPECT imaging in temporal lobe epilepsy. J Neurol Neurourg Psychiatr. 1990;53:11–15.

    Article  CAS  Google Scholar 

  36. Rowe CC, Berkovic SF, Austin MC, et al. Visual and quantitative analysis of interictal SPECT with Tc99m HMPAO in temporal lobe epilepsy. J Nucl Med. 1991;32:1688–1694.

    PubMed  CAS  Google Scholar 

  37. Stefan H, Bauer J, Feistel H, et al. Regional cerebral flow during focal seizures of temporal and fronto central onset. Ann Neurol. 1990;27:162–166.

    Article  PubMed  CAS  Google Scholar 

  38. Duncan R, Patterson J, Roberts R, Hadley DM, Bone I. Ictal/postictal SPECT in the pre-surgical localisation of complex partial seizures. J Neurol Neurosurg Psychiatr. 1993;56:141–148.

    Article  PubMed  CAS  Google Scholar 

  39. Lang W, Podreka I, Suess E, Muller C, Deecke L. Single photon emission computed tomography during and between seizures. J Neurol. 1988;235:277–284.

    Article  PubMed  CAS  Google Scholar 

  40. Sperling B, Lassen NA. Hyperfixation of HMPAO in subacute ischaemic stroke leading to spuriously high estimates of cerebral blood flow by SPECT. Stroke. 1993;24:193–194.

    Article  PubMed  CAS  Google Scholar 

  41. Valmier J, Touchon J, Daures P, Zanca M, Baldy Moulinier M. Correlations between cerebral blood flow variations and clinical parameters in temporal lobe epilepsy: an interictal study. J Neurol Neurosurg Psychiatr. 1987;50:1306–1311.

    Article  PubMed  CAS  Google Scholar 

  42. Duncan S, Gillan J, Duncan R, Brodie M. Interictal HMPAO SPECT: a routine investigation in medically intractable complex partial epilepsy?Epilepsy Res. 1992;13:83–87.

    Article  PubMed  CAS  Google Scholar 

  43. Duncan R, Patterson J, Hadley DM, Roberts R, Bone I. Interictal temporal hypoperfusion is related to early onset temporal lobe epilepsy. Epilepsia. 1996;37:134–140.

    Article  PubMed  CAS  Google Scholar 

  44. Babb TL, Brown WJ. Neuronal dendritic and vascular profiles of human temporal lobe epilepsy correlated with cellular physiology in vivo. In:Delgado Escueta AV, Ward AA, Woodbury DM, editors. Basic mechanisms of the epilepsies. New York: Raven;19

    Google Scholar 

  45. Sagar HJ, Oxbury JM. Hippocampal neuron loss in temporal lobe epilepsy: correlation with early childhood convulsions. Ann Neurol. 1987;22:334–340.

    Article  PubMed  CAS  Google Scholar 

  46. Greenamyre JT. The role of glutamate in neurotransmission and in neurologic disease. Arch Neurol. 1986;43:1058–1063.

    Article  PubMed  CAS  Google Scholar 

  47. Rausch R, Walsh GO. Right hemisphere language dominance in right handed epileptic patients. Arch Neurol. 1984;41:1077–1080.

    Article  PubMed  CAS  Google Scholar 

  48. Prince DA, Wilder BJ. Control mechanisms in cortical epileptogenic foci,’ surround’ inhibition. Arch Neurol. 1967;16:194–202.

    Article  PubMed  CAS  Google Scholar 

  49. Engel J, Kuhl DE, Phelps ME, Mazziotta JC. Interictal cerebral glucose metabolism and partial epilepsy and its relation to EEG changes. Ann Neurol. 1982;12:510–517.

    Article  PubMed  Google Scholar 

  50. Biersack HJ, Stefan H, Reichman K. Brain imaging with 99mTc-HMPAO SPECT, CT and NMR-results in epilepsy. J Nucl Med. 1986;27:102.

    Google Scholar 

  51. Shen W, Lee BI, Park H, et al. HIPDM-SPECT brain imaging in the presurgical evaluation of patients with intractable seizures. J Nucl Med. 1990;31:1280–1284.

    PubMed  CAS  Google Scholar 

  52. Harvey AS, Hopkins IJ, Bowe JM, Cook DJ, Shield LK, Berkovic SF. Frontal lobe epilepsy: clinical seizure characteristics and localisation with ictal 99mTcHMPAO SPECT. Neurology. 1993;43:1966–1980.

    Article  PubMed  CAS  Google Scholar 

  53. Andersen AR, Friberg H, Schmidt JF, Hasselbalch SG. Quantitative measurements of cerebral blood flow using SPECT and Tc99m D,L-HMPAO compared to xenon-133. J Cerebr Blood Flow Metab. 1988;8 (Suppl. 1):S69–S81.

    CAS  Google Scholar 

  54. Friberg L, Andersen AR, Lassen NA, Holm S, Dam M. Retention of 99mTc bicisate in the human brain after intracarotid injection. J Cerebr Blood Flow Metab. 1994;14 (Suppl. 1):S19–S27.

    CAS  Google Scholar 

  55. Grunwald F, Menzel C, Pavics L, et al. Ictal and interictal brain SPECT imaging in epilepsy using technetium 99mECD. J Nucl Med. 1994;35:1896–1901.

    PubMed  CAS  Google Scholar 

  56. Newton MR, Bercovik SF, Austin MC, Rowe CC, McKay WJ, Bladin PF. Postictal switch in blood flow distribution and temporal lobe seizures. J Neurol Neurosurg Psychiatr. 1992;55:891–894.

    Article  PubMed  CAS  Google Scholar 

  57. Harvey AS, Bowe JM, Hopkins IJ, Shield LK, Cook DJ, Berkovic SF. Ictal 99mTc HMPAO single photon emission computed tomography in children with temporal lobe epilepsy. Epilepsia. 1993;34:869–8

    Article  PubMed  CAS  Google Scholar 

  58. Lee BI, Markand ON, Wellman HN, et al. HIPDM SPECT in patients with medically intractable complex partial seizures. Arch Neurol. 1988;45:397–402.

    Article  PubMed  CAS  Google Scholar 

  59. Berkovic SF, Newton MR, Chiron C, Dulac O. Single photon emission computed tomography. In:Engel JR, Jr., editor. Surgical treatment of the epilepsies. New York: Raven;1993:233–243.

    Google Scholar 

  60. Newton MR, Berkovic SF, Austen MC. Dystonia, clinical lateralisation and regional blood flow changes in temporal lobe seizures. Neurology. 1992;42:371–377.

    Article  PubMed  CAS  Google Scholar 

  61. Collins RC, Kennedy C, Sokoloff L, Plum F. Metabolic anatomy of focal motor seizures. Arch Neurol. 1976;33:536–542.

    Article  PubMed  CAS  Google Scholar 

  62. Rowe CC, Berkovic SF, Sia STB, Bladin PRPatterns of postictal blood flow in temporal lobe epilepsy: qualitative and quantitative findings. Neurology. 1991;41:1096–1103.

    Article  PubMed  CAS  Google Scholar 

  63. Duncan R, Patterson J, Roberts R, Hadley D. Regional cerebral blood flow during posterior seizures: an HMPAO SPECT study. JNNP. 1995;59:203.

    Google Scholar 

  64. Marks DA, Katz A, Hoffer P, Spencer SS. Localisation of extratemporal epileptic foci during ictal single photon emission computed tomography. Ann Neurol. 1992;31:250–253.

    Article  PubMed  CAS  Google Scholar 

  65. Duncan R, Patterson J, Hadley DM, Roberts R, Bone I. Ictal HMPAO SPECT in frontal lobe seizures. Epilepsia. 1993;34 (Suppl. 2):174.

    Google Scholar 

  66. Duncan R, Rahi S, Bernard AM, et al. Ictal cerebral blood flow in seizures originating in the posterolateral cortex. J Nucl Med, in press.

    Google Scholar 

  67. Ho SS, Berkovic SF, Newton MR, Austin MC, McKay WJ, Bladin PF. Ictal 99mTc HMPAO SPECT findings in parietal lobe epilepsy. Epilepsia. 1993;34 (Suppl. 2):112.

    Google Scholar 

  68. Newton MR, Berkovic SF, Austin MC, Rowe CC, McKay WJ, Bladin PF. SPECT in the localisation of extratemporal and temporal seizure foci. J Neurol Neurosurg Psychiatr. 1995;59: 26–30.

    Article  PubMed  CAS  Google Scholar 

  69. Wyler AR, Nadi NS, Porter RJ. Acetylcholine, GABA, benzodiazepine and glutamate receptors in the temporal lobe of epileptic patients. Neurology. 1987;37 (Suppl. 1):S103.

    Google Scholar 

  70. Johnson EW, De Lanerolle NC, Kim JH, et al. Central and peripheral benzodiazepine receptors. Neurology. 1992;42:811–815.

    Article  PubMed  CAS  Google Scholar 

  71. Van Huffelen AC, Van Isselt JW, Van Veelen CW. Identification of the side of the epileptic focus with 123I Iomazenil SPECT: a comparison with 18FDG and ictal EEG findings in patients with medically intractable complex partial seizures. Acta Neurochir Wien. 1990;50 (Suppl. 1):95–99.

    Google Scholar 

  72. McDonald JW, Garofalo EA, Hood T, et al. Altered excitatory and inhibitory amino acid receptor binding in hippocampus of patients with temporal lobe epilepsy. Ann Neurol. 1991;29:529–541.

    Article  PubMed  CAS  Google Scholar 

  73. Sloviter RS. Excitotoxic mechanisms of epileptic brain damage. In: Schwartz R, Ben-Ari Y, editors. Excitatory amino acids and epilepsy. New York: Plenum;1985:659–671.

    Google Scholar 

  74. Wasterlain CG, Farber DB, Fairchild MD. Synaptic mechanisms in the kindled epileptic focus: a speculative synthesis. Adv Neurol. 1986;44:411–433.

    PubMed  CAS  Google Scholar 

  75. al Tajir G, Starr MS. Anticonvulsant effect of striatal dopamine D2 receptor stimulation. Neuroscience. 1991;43:51–57.

    Article  Google Scholar 

  76. Boundy KL, Rowe CC, Black AB, et al. Localisation of temporal lobe epileptic foci with I-123 iododexetimide (IDEX) cholinergic neuroreceptor SPECT. Acta Neurol Belg. 1995;95:S39.

    Google Scholar 

  77. Jeffery PJ, Monsein LH, Szabo S, et al. Mapping the distribution of amobarbital sodium in the intracarotid Wada test by use of Tc99m HMPAO with SPECT. Radiology. 1991;178:847–850.

    PubMed  CAS  Google Scholar 

  78. Ryding E, Sjoholm H, Skeidsvoll H, Elmqvist D. Delayed decrease in hemispheric cerebral blood flow during Wada test demonstrated by 99mTc-HMPAO single photon emission computed tomography. Acta Neurol Scand. 1989;80:248–254.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Duncan, R. (1997). SPECT imaging in focal epilepsy. In: Duncan, R. (eds) SPECT Imaging of the Brain. Developments in Nuclear Medicine, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5398-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5398-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6271-8

  • Online ISBN: 978-94-011-5398-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics