Skip to main content

Do NSAIDs Adversely Affect Joint Pathology in Osteoarthritis?

  • Chapter
Side Effects of Anti-Inflammatory Drugs IV

Abstract

Shortly after the market introduction of NSAIDs in the UK, there were several reports that these drugs accelerate the progression of the osteoarthritis (OA) disease process. There have been suggestions that this effect may be related to dose and to duration of administration. In animal work, it has been shown that NSAIDs have little effect on normal loaded joints but that they diminish cartilage metabolism in diseased joints. Our hypothesis proposes that NSAIDs adversely affect joint pathology in OA by affecting prostaglandin-regulation of cartilage proteoglycans, enhancing interleukin-1 production and attenuating vasodilation, so reducing the OA-enhanced joint perfusion and reducing the repair process. These effects combine to increase the progression of the OA pathology in subjects receiving potent prostaglandin synthesis. To test this hypothesis studies were performed in two phases to examine the long-term effects of treatment of OA patients with NSAIDs of varying potency as prostaglandin-synthesis inhibitors and differing effects on other molecular and cellular events in inflammation. In Phase I, 105 OA patients awaiting hip arthroplasty were treated prospectively with a strong or a weak prostaglandin synthesis inhibitor, indomethacin or azapropazone respectively. In Phase II subjects received diclofenac, naproxen, piroxicam, tiaprofenic acid or the analgesics, dextropropoxyphene and paracetamol. A few patients elected for no treatment. In both phases, pain and radiological joint space were monitored up to the arthroplasty, following which the histology of the excised femoral head was determined. As judged by histopathological data, the treatment groups in both Phase I and Phase II had similar pain relief from all the drugs and were at a similar pathophysiological end-point when they came to arthroplasty. In the indomethacin group, the ‘affected’ hips lost joint space more rapidly than did the contralateral hips, a difference not seen in the azapropazone group. The patients receiving azapropazone who had higher synovial concentrations of vasodilator prostaglandin E2 took longer than the indomethacin group to reach the arthroplasty end-point. The patients in Phase II all appeared to have the same progression in OA as one another, and these appeared similar to those in the indomethacin group in Phase I.

These results show that potent prostaglandin synthesis inhibitors all have about the same propensity to accelerate joint injury in OA; weak prostaglandin inhibitors or analgesics are less likely to cause this acceleration of joint destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Demartini F, Grokoest AW, Ragan C. Pathological fractures in patients with rheumatoid arthritis treated with cortisone. JAMA. 1952; 149: 750–8.

    Article  CAS  Google Scholar 

  2. Allen EH, Murray RO. Iatrogenic arthropathies. Europ Assoc Radiol Proc., Exerpta Medica. 1971; 249: 204–10.

    Google Scholar 

  3. Huskisson EH, Doyle DV, Lanham JG. Drug treatment of osteoarthritis. Clin Rheum Dis. 185; 11 (2): 421–31.

    Google Scholar 

  4. Rubens-Duval A, Villiaumey J, Kaplan G, Bailly D. Surménage et détérioration rapide de coxo-fémorales arthrosiques au cours de thérapeutiques anti-inflammatoires non corticoïdes. Rev Rhum. 1970; 37 (8–9): 535–41.

    PubMed  CAS  Google Scholar 

  5. Arora JS. Indomethacin arthropathy of the hips. Proc R Soc Med. 1968; 61: 669.

    PubMed  CAS  Google Scholar 

  6. Newman NM, Ling RSM. Acetabular bone destruction related to non-steroidal anti-inflammatory drugs. Lancet. 1985; ii: 11–13.

    Article  Google Scholar 

  7. Desproges-Gotteron G, Loubet R, Dunoyer J, Laures J-C. Enquête anatamopathologique sur les têtes fémorales prélevées lors des arthroplasties de hanches. Rev Rhum. 1971; 38 (10): 623–30.

    Google Scholar 

  8. Foss Hauge M. Hofteleddsartrose - indomethacin. Tidsskrist Norske Laegeforen. 1975; 95 (28): 15946.

    Google Scholar 

  9. Rønningen H, Langeland N. Indomethacin treatment in osteoarthritis of the hip joint. Acta Orthop Scand. 1979; 50: 169–74.

    Article  PubMed  Google Scholar 

  10. Rø J, Sudman E, Marton PF. Effect of indomethacin on fracture healing in rats. Acta Orthop Scand. 1976; 47: 588–99.

    Article  Google Scholar 

  11. Shindell R, Lippiello L, Connolly JF. Uncertain effect of indomethacin on physeal growth injury. Experiments in rabbits. Acta Orthop Scand. 1988; 59: 46–9.

    Article  PubMed  CAS  Google Scholar 

  12. Engesaeter LB, Sudman B, Sudman E. Fracture healing in rats inhibited by locally administered indomethacin. Acta Orthop Scand. 1992; 56: 25–7.

    Google Scholar 

  13. Leunig M, Yuan F, Gerweck LE, Berk DA, Jain RK. Quantitative analysis of angiogenesis and growth of bone: effect of indomethacin exposure in a combined in vitro-in vivo approach. Res Exp Med., 1995; 195: 275–88.

    Article  CAS  Google Scholar 

  14. Schoutens A, Verhas M, Dourov N, et al. Bone loss and bone flow in paraplegic rats treated with calcitoin diphosphonate and indomethacin. Cale Tissue Res. 1988; 42: 136–43.

    Article  CAS  Google Scholar 

  15. Peel NFA, Barrington NA, Blumsohn A, Colwell A, Hannon R, Eastell R. Bone mineral density and bone turnover in spinal osteoarthritis. Ann Rheum Dis, 1995; 54: 867–871.

    Article  PubMed  CAS  Google Scholar 

  16. Re J, Langeland N, Sander J. Effect of indomethacin on collagen metabolism of rat fracture callus in vitro. Acta Orthop Scand. 1978; 49: 323–8.

    Article  Google Scholar 

  17. Huo MH, Trïoano NW, Pelker RR, Gundberg CM, Friedlaender GE. The influence of ibuprofen on fracture repair: biomechanical, biochemical, histologic and histomorphometric parameters in rats. J Orthop Res. 1991; 9: 383–90.

    Article  PubMed  CAS  Google Scholar 

  18. Ho M-L, Chang J-K, Wang G-J. Anti-inflammatory drug effects on bone repair and remodelling in rabbits. Clin Orthop. 1995; 313: 270–8.

    PubMed  Google Scholar 

  19. Rainsford KD. Inhibitors of prostaglandin and leukotriene production. In: Curtis Prior PB, ed. Prostaglandins: Biology and Chemistry of Prostaglandins and Related Eicosanoids. Edinburgh: Churchill Livingstone; 1988: 52–68.

    Google Scholar 

  20. Jones AC, Doherty M. The treatment of osteo-arthritis. Br J Clin Pharmacol. 1992; 33: 357–63.

    Article  PubMed  CAS  Google Scholar 

  21. Norridan RW, Jee WS, High WB. The role of prostaglandins in bone in vivo. Prostagl Leukotr Essential Fatty Acids. 1990; 41: 139–49.

    Article  Google Scholar 

  22. Raisz LG. The role of prostaglandins in the local regulation of bone metabolism. Progr Clin Biol Res. 1990; 332: 195–203.

    CAS  Google Scholar 

  23. Rainsford KD. Analgesics vs. non-steroidal anti-inflammatory drugs (NSAIDs): Differences among NSAIDs. In: Brandt KD, ed. Cartilage changes in osteoarthritis. Indianapolis: Indiana University School of Medicine; 1990: 129–36.

    Google Scholar 

  24. Hermann JH, Hess EV. Nonsteroidal anti-inflammatory drugs and modulation of cartilagenous changes in osteoarthritis and rheumatoid arthritis. Clinical implications. Am J Med. 1984; 80 (Suppl) 16–25.

    Google Scholar 

  25. Griswald DE, Hillegas LM, Breton JJ, Esser KM, Adams JL. Differentiation in vivo of classical non-steroidal anti-inflammatory drugs from cytokine suppressive anti-inflammatory drugs and other pharmacological classes using mouse tumour necrosis factor alpha production. Drugs Exp Clin Res. 1993; 19: 243–8.

    Google Scholar 

  26. Saklatvala J, Pilsworth LMC, Sarsfield SJ, Gavrilovic J, Heath JK. Pig catabolin is a form of interleukin 1. Cartilage and bone resorb, fibroblasts make prostaglandin and collagenase and thymocyte proliferation is augmented in response to one protein. Biochem J. 1984; 224: 461–6.

    PubMed  CAS  Google Scholar 

  27. Rainsford KD, Davies A, Mundy L, Ginsberg I. Comparative effects of azapropazone on cellular events at inflamed sites. Influence on joint pathology, leucocyte superoxide and eicosanoid production, platelet aggregation, synthesis of cartilage proteoglycans, synovial production and actions of interleukin-1 induced cartilage resorption correlated with drug uptake into cartilage in vitro. J Pharm Pharmacol. 1989; 41: 322–30.

    Article  PubMed  CAS  Google Scholar 

  28. Rainsford KD, Ying C, Smith F. Comparative effects of meloxicam on cartilage-synovium components of joint injury in vitro. 2nd Int. Congr. Osteoarthritis Res. Soc., Orlando, 9th-11th December 1984, Abstr.

    Google Scholar 

  29. Pelletier JP, Martel-Pelletier J. Protective effects of corticosteroids on cartilage lesions and osteophyte formation in the Pond-Nuki dog model of osteoarthritis. Arthritis Rheum. 1989; 32: 181–93.

    Article  PubMed  CAS  Google Scholar 

  30. MacAlindon T, Dieppe P. The medical management of osteoarthritis of the knee: an inflammatory issue? Br J Rheumatol. 1990; 29: 471–3.

    Article  Google Scholar 

  31. Palmoski MJ, Brandt KD. Effects of salicylate and indomethacin on glycosaminoglycan and prostaglandin E2 synthesis in intact canine knee cartilage ex vivo. Arthritis Rheum. 1984; 27: 398–403.

    Article  PubMed  CAS  Google Scholar 

  32. Palmoski MJ, Brandt KD. In vivo effect of aspirin on canine osteoarthritic cartilage. Arthritis Rheum. 1983; 26: 994–1001.

    Article  PubMed  CAS  Google Scholar 

  33. Pettipher ER, Henderson B, Edwards JCW, Higgs GA. Indomethacin enhances proteoglycan loss from articular cartilage in antigen-induced arthritis. Br J Pharmacol. 1986; 94: 341.

    Google Scholar 

  34. Palmoski MJ, Brandt KD. Aspirin aggravates the degeneration of canine joint cartilage caused by immobilisation. Arthritis Rheum 1982; 25: 1333–42.

    Article  PubMed  CAS  Google Scholar 

  35. Herman JH, Appel AM, Khosla RC, Hess EV. The in vitro effect of select classes of nonsteroidal anti-inflammatory drugs on normal cartilage metabolism. J Rheumatol. 1986; 13: 1014–18.

    PubMed  CAS  Google Scholar 

  36. Brandt KD. Effects of non-steroidal anti-inflammatory drugs on chondrocyte metabolism in vitro. Am J Med. 1987; 83: 29–34.

    Article  PubMed  CAS  Google Scholar 

  37. Ghosh P. Anti-rheumatic drugs and cartilage. Bailliere’s Clin Rheumatol. 1988; 2: 309–38.

    Article  CAS  Google Scholar 

  38. Meyer-Carrive I, Ghosh P. Effects of tiaprofenic acid (Surgam) on cartilage proteoglycans in the rabbit joint immobilisation model. Ann Rheum Dis. 1992; 51: 448–55.

    Article  PubMed  CAS  Google Scholar 

  39. Rainsford KD, Rashad SY, Revell PA, et al. Effects of NSAIDs on cartilage proteoglycan and synovial prostaglandin metabolism in relation to joint deterioration in osteoarthritis. In: Bálint G, Gömör B, Halinda L, eds. Rheumatology, State of the Art. Amsterdam: Elsevier; 1992: 177–83.

    Google Scholar 

  40. Rainsford KD. Mode of action, uses and side-effects of anti-rheumatic drugs. In: Rainsford KD, ed. Advances in Anti-Rheumatic Therapy. Boca Raton: CRC Press; 1996: 59–111.

    Google Scholar 

  41. Inhibition of glucosamine-6-PO4 synthesis by salicylate and other anti-inflammatory agents in vitro. Arthritis Rheum. 1961; 4:624–31.

    Article  Google Scholar 

  42. Whitehouse MW. Some biochemical and pharmacological properties of anti-inflammatory drugs. Progr. Drug Res. 1965; 8: 321–429.

    CAS  Google Scholar 

  43. Hugenberg ST, Brandt KD, Cole CA. Effect of sodium salicylate, aspirin, and ibuprofen on enzymes required by the chondrocyte for synthesis of chondroitin sulfate. J Rheumatol. 1993; 20: 2128–33.

    PubMed  CAS  Google Scholar 

  44. Martel-Pelletier J, Cloutier JM, Howell DS, et al. Human rheumatoid arthritic cartilage and its neural proteoglycan-degrading proteases. Arthritis Rheum. 1985; 28: 405–42.

    Article  CAS  Google Scholar 

  45. Pelletier JP, Martel-Pelletier J. Evidence for the involvement of interleukin 1 in human osteoarthritic cartilage degradation: protective effect of NSAID. J Rheumatol. 1989 (Suppl 18); 16: 19–27.

    Google Scholar 

  46. Fibbi G, Serni U, Pucci M, Caldini R, Magnelli L, Del Rosso M. Plasminogen activators and tiaprofenic acid in inflammation. A preliminary study. Drugs. 199?; 25 (Suppl): 9–14.

    Google Scholar 

  47. Rashad S, Revell P, Hemingway A, Low F, Rainsford K, Walker F. Effect of non-steroidal anti-inflammatory drugs on the course of osteoarthritis. Lancet. 1989; ii: 519–22.

    Article  Google Scholar 

  48. Pelletier JB, Martel-Pelletier J. Pathogenesis of osteoarthritis and use of diclofenac in the treatment of experimental models. Semin Arthritis Rheum. 1985; 15 (Suppl 1): 24–8.

    Article  PubMed  CAS  Google Scholar 

  49. Storey GO. Bone necrosis in joint disease. Proc R Soc Med. 1968; 61: 961–9.

    PubMed  CAS  Google Scholar 

  50. Coke H. Long-term indomethacin therapy of coxarthrosis. Ann Rheum Dis. 1967; 26: 346–7.

    Google Scholar 

  51. Jones A, Doherty M. Osteoarthritis, cartilage and NSAIDs. Care Elderly. 1992; 4: 97.

    CAS  Google Scholar 

  52. Doherty M, Holt M, MacMillan P, Watt I, Dieppe P. A reappraisal of ‘analgesic hip’. Ann Rheum Dis. 1986; 45: 272–6.

    Article  PubMed  CAS  Google Scholar 

  53. Rashad S, Rainsford KD, Revell P, Low F, Hemmingway A, Walker F. The effects of NSAIDs on the course of osteoarthritis. In: Bálint G. Gömör B, Hadinka L, eds. Rheumatology, State of the Art. Amsterdam: Elsevier; 1992: 177–83.

    Google Scholar 

  54. Hemingway A, Low F, Rashad WY, Rainsford KD, Revell P, Walker F. Radiographic assessment of change in joint space in osteoarthritis. Hung Rheumatol. 1991; xxxii (1991 suppl): 62.

    Google Scholar 

  55. Buckland-Wright JC, Macfarlane DG, Williams SA, Ward RJ. Accuracy and precision of joint space width measurements in standard and macroradiographs of osteoarthritic knees. Ann Rheum Dis. 1995; 54: 872–80.

    Article  PubMed  CAS  Google Scholar 

  56. Doyle DV, Dieppe PA, Scott J, Huskisson EC. An articular index for the assessment of osteoarthritis. Ann Rheum Dis. 1981; 40: 75–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Walker, F.S., Rainsford, K.D. (1997). Do NSAIDs Adversely Affect Joint Pathology in Osteoarthritis?. In: Rainsford, K.D. (eds) Side Effects of Anti-Inflammatory Drugs IV. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5394-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5394-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6269-5

  • Online ISBN: 978-94-011-5394-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics