Skip to main content

Abstract

In the present work, the authors investigated the effect of both main vegetative transmitters and some regulatory peptides on epidermal growth factor (EGF) secretion into whole saliva. We studied how the salivary and glandular EGF levels depend on the functional activity of salivary glands in rats. Experimental groups comprised: (a) control, (b) bilateral ablation (AB) of submandibular and sublingual salivary glands, (c) 0.5% citric acid in drinking water treatment (Cit), and (d) ablation plus citric acid combination (AB+Cit). On the 7th day under narcosis, pilocarpine-stimulated saliva was collected and the amylase activity was measured along with concentrations of EGF and the protein, both in saliva and in salivary glands. In the first study, in conscious rats adrenergic activation of EGF secretion was observed. During noradrenaline stimulation, the curve showing EGF discharge was parallel to the amylase secretory curve. Salivary amylase secretion was stimulated by adrenergic, cholinergic and VIP-ergic actions. Other regulatory peptides, such as CCK, bombesin and somatostatin, did not seem to be involved in controlling EGF or amylase secretion. In the second study, 7 days after ablation, protein concentration of salivary glands decreased in control animals 30 min after pilocarpine stimulation. There was no significant change in protein concentration after this stimulation in the other groups. EGF concentration increased about 40% in submandibular tissues of the Cit group of animals, and decreased in the parotid tissues in all treated groups. The EGF concentration decreased after pilocarpine stimulation to a great extent in all salivary tissues. Protein concentration in saliva was significantly higher than the initial level in all treated groups (AB: +240%; Cit: +80%; AB+Cit: +350%). EGF concentration of saliva was slightly decreased in the ablation group (-10%), while it increased in the other treated animals (Cit: +20%, AB+Cit: +200%). Changes in the EGF level in saliva were lower than 10% in the control group. In conclusion:

  1. 1.

    EGF secretion is controlled by adrenergic pathways but not by cholinergic mechanisms or by VIP, CCK, bombesin or somatostatin

  2. 2.

    The EGF level in saliva can be increased by enhanced activity of salivary glands

  3. 3.

    EGF in saliva is not exclusively produced by one type of salivary glands

  4. 4.

    Parotid glands can compensate the EGF secretion to saliva when functional activity of the other main gland is lost

Correspondence

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gray MR, Donnelly RJ, Kingsnorth AN. Role of salivary epidermal growth factor in the pathogenesis of Barrett’s columnar lined oesophagus. Br J Surg. 1991;78: 1461–6.

    Article  PubMed  CAS  Google Scholar 

  2. Purushotham KR, Zelles T, Blazsek J et al. Effect of EGF on rat parotid gland secretory function. Comp Biochem Physiol. 1995; 110: 7–14.

    CAS  Google Scholar 

  3. Carpenter G, Cohen S. Epidermal growth factor. Annu Rev Biochem. 1979; 48: 193–216.

    Article  PubMed  CAS  Google Scholar 

  4. Kirkegaard P, Skov Olsen P, Poulsen SS, Nexo E. Epidermal growth factor inhibits cysteamine-induced duodenal ulcers. Gastroenterology. 1983; 85: 1277–83.

    PubMed  CAS  Google Scholar 

  5. Royce LS, Baum BJ. Physiologic levels of salivary epidermal growth factor stimulate migration of an oral epithelial cell line. Biochim Biophys Acta. 1991; 1092: 401–3.

    Article  PubMed  CAS  Google Scholar 

  6. Konturek JW, Bielanski W, Konturek SJ, Bogdal J, Oleksy J. Distribution and release of epidermal growth factor in man. Gut. 1989; 30: 1194–200.

    Article  PubMed  CAS  Google Scholar 

  7. Ino M, Ushiro K, Ino C, Yamashita T, Kumazawa T. Kinetics of epidermal growth factor in saliva. Acta Otolaryngol Suppl Stockh. 1993; 500: 126–30.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. 7 Biol Chem. 1962; 237: 1555–62.

    CAS  Google Scholar 

  9. Barka T. Biologically active polypeptides in submandibular glands. J Histochem Cytochem. 1980; 28: 836–59.

    Article  PubMed  CAS  Google Scholar 

  10. McGurk M, Hanford L, Justice S, Metcalfe RA. The secretory characteristics of epidermal growth factor in human saliva. Arch Oral Biol. 1990; 35: 653–9.

    Article  PubMed  CAS  Google Scholar 

  11. Siminoski K, Bernanke J, Murphy R.A. Nerve growth factor and epidermal growth factor in mouse submandibular glands: identical diurnal changes and rate of secretagogue-induced synthesis. Endocrinology. 1993; 1332: 2031–7.

    Article  Google Scholar 

  12. Noguchi S, Ohba Y, Oka T. Effect of salivary epidermal growth factor on wound healing of tongue in mice. Am 7 Physiol. 1991; 260: 620–5.

    Google Scholar 

  13. Hormia M, Thesleff I, Perheentupa J, Pesonen K, Saxen L. Increased rate of salivary epidermal growth factor secretion in patients with juvenile periodontitis. Scand J Dent Res. 1993; 101: 138–44.

    PubMed  CAS  Google Scholar 

  14. Hirasawa Y, Asaki S, Hongo M et al. Salivary epidermal growth factor in patients with peptic ulcer. Nippon Shokakibyo Gakkai Zasshi. 1991; 88: 1043–50.

    PubMed  CAS  Google Scholar 

  15. Maccini DM, Veit BC. Salivary epidermal growth factor in patients with and without acid peptic disease. Am J Gastroenterol. 1990; 85: 1102–4.

    PubMed  CAS  Google Scholar 

  16. Bergler W, Petroianu G, Metzler R. Diminution of epidermal growth factor in saliva of patients with carcinoma of the oropharynx. Acta Otorrinolaringol Esp. 1992; 43: 173–5.

    PubMed  CAS  Google Scholar 

  17. Wang SL, Milles M, Wu-Wang CY et al. Effect of cigarette smoking on salivary epidermal growth factor (EGF) and EGF receptor in human buccal mucosa. Toxicology. 1992; 75: 145–57.

    Article  PubMed  CAS  Google Scholar 

  18. Dutta SK, Orestes M, Vengulekur S, KwoP. Ethanol and human saliva: effect of chronic alcoholism on flow rate, composition, and epidermal growth factor. Am J Gastroenterol. 1992; 87: 350–4.

    PubMed  CAS  Google Scholar 

  19. Sarosiek J, Feng T, McCallum RW. The interrelationship between salivary epidermal growth factor and the functional integrity of the esophageal mucosal barrier in the rat. Am J Med Sci. 1991; 302: 359–63.

    Article  PubMed  CAS  Google Scholar 

  20. Gresik EW, Van der Noen H, Barka T. Epidermal growth factor-like material in rat submandibular gland. Am J Anat. 1979; 156: 83–9.

    Article  PubMed  CAS  Google Scholar 

  21. Alm P, Bloom GD, Carlsö B. Adrenergic and cholinergic nerves of bovine, guinea-pig and hamster salivary glands. A light and electronmicroscopic study. Z Zellforsch. 1973; 138: 407–20.

    Article  PubMed  CAS  Google Scholar 

  22. Byyny RL, Orth DN, Cohen S, DoyneES. Epidermal growth factor: effects of androgens and adrenergic agents. Endocrinology. 1974; 95: 776–82.

    Article  PubMed  CAS  Google Scholar 

  23. Murphy RA, Pantazis NJ, Papastavros M. Epidermal growth factor and nerve growth factor in mouse saliva: a comparative study. Dev Biol. 1979; 71: 356–70.

    Article  PubMed  CAS  Google Scholar 

  24. Roberts ML. The in vitro secretion of epidermal growth factor by mouse submandibular salivary gland. Arch Pharmacol. 1977; 296: 301–5.

    Article  CAS  Google Scholar 

  25. Olsen PS, Kirkegaard P, Poulsen SS, Nexo E. Adrenergic effects on exocrine secretion of rat submandibular epidermal growth factor. Gut. 1984; 25: 1234–40.

    Article  PubMed  CAS  Google Scholar 

  26. Manson B, Ekström J. On the non-adrenergic, non-cholinergie contribution to the parasympathetic nerve-evoked secretion of parotid saliva in the rat. Acta Physiol Scand. 1991; 251 C175–85.

    Google Scholar 

  27. Walsh JH, Dockray GJ. Gut Peptides. New York: Raven Press; 1994.

    Book  Google Scholar 

  28. Booth AG, Olaniyan O, Vanderpuye OA. An improved method for the preparation of human placental syncytiotrophoblast microvilli. Placenta. 1980; 1: 327–36.

    Article  PubMed  CAS  Google Scholar 

  29. Simpson RJ, Smith JA, Moritz RL et al. Rat epidermal growth factor: complete amino acid sequence. Homology with the corresponding murine and human protein; isolation of aform truncated at both ends with full in vitrobiological activity. Eur J Biochem. 1985; 153: 629–37.

    Article  PubMed  CAS  Google Scholar 

  30. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248–54.

    Article  PubMed  CAS  Google Scholar 

  31. Bernfield P. Amylases, alpha and beta. Meth Enzymol. 1955; 1: 149–58.

    Article  Google Scholar 

  32. Schneier CA, Hall HD. Autonomic pathways involved in a sympathetic-like action of pilocarpine on salivary composition. Proc Soc Exp Biol Med. 1966; 121: 96–101.

    Google Scholar 

  33. Goll R, Poulsen JH, Schmidt P, Schjoldager B, Poulsen SS, Holst JJ. Peptide-evoked release of amylase from isolated acini of the rat parotid gland. Regul Peptides. 1994; 51: 237–54.

    Article  CAS  Google Scholar 

  34. Tazi-Saad K, Chariot J, Roze C. Control of pepsin secretion by regulatory peptides in the rat stomach: comparison with acid secretion. Peptides. 1992; 13: 233–9.

    Article  PubMed  CAS  Google Scholar 

  35. Ichikawa H. Leucine enkephaline, neurokinin A and cholecystokinin like immunoreactivities in the guinea pig tongue. Arch Oral Biol. 1990; 35: 181–91.

    Article  PubMed  CAS  Google Scholar 

  36. Liddle R. Cholecystokinin. In: Walsh JH, Dockray GJ, eds. Gut Peptides. New York: Raven Press; 1994: 175–216.

    Google Scholar 

  37. Frazen L, Forsgen S, Gustafsson H, Henriksson R. Irradiation induced effects on the innervation of rat salivary glands, changes in enkephalin and bombesin like immunoreactivity in ganglionic cells and intraglandular nerve fibers. Cell Tissue Res. 1993; 271: 529–36.

    Article  Google Scholar 

  38. Letic-Gavrilovic A, Abe K. Localization of chromogranins, nonneurospecific enolase, and different forms of somatostatin in submandibular salivary glands of mice. 7 Dent Res. 1990; 69: 1494–9.

    CAS  Google Scholar 

  39. Hall HD, Schneier CA. Functional mediation of compensatory enlargement of the parotid gland. Cell Tissue Res. 1977; 184: 249–54.

    Article  PubMed  CAS  Google Scholar 

  40. Zelles T, Blazsek J, Kóbor A, Gelencsér F, Enlargement of the parotid gland induced by gustatory stimulus. Fogory Szle. 1984; 77: 315–18.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blazsek, J. et al. (1997). Possible Compensation in Epidermal Growth Factor Production by Saliva in Rat. In: Gaginella, T.S., Mózsik, G., Rainsford, K.D. (eds) Biochemical Pharmacology as an Approach to Gastrointestinal Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5390-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5390-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6267-1

  • Online ISBN: 978-94-011-5390-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics