Skip to main content

The history of anti-inflammatory drugs and their mechanism of action

  • Chapter

Abstract

The history of the anti-inflammatory drugs begins with the early use of decoctions or preparations of plants containing salicylate. Salicylic acid and salicylates are constituents of several plants long used as medicaments. About 3500 years ago the Egyptian Ebers papyrus recommended the application of a decoction of the dried leaves of myrtle to the abdomen and back to expel rheumatic pains from the womb. A thousand years later Hippocrates recommended the juices of the poplar tree for treating eye diseases and those of willow bark to relieve the pain of childbirth and to reduce fever. All of these medicinal remedies contain salicylates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stone E. An account of the success of the bark of the willow in the cure of agues. Phil Trans R Soc. 1763;53:195–200.

    Article  Google Scholar 

  2. Dreser H. Pharmacologisches über Aspirin (Acetylsalicyl-saüre). Pflügers Arch. 1899;76:306–18.

    Article  CAS  Google Scholar 

  3. Flower RJ. Drugs which inhibit prostaglandin biosynthesis. Pharmacol Rev. 1974;26:33–67.

    Google Scholar 

  4. Whitehouse MW, Haslam JM. Ability of some antirheumatic drugs to uncouple oxidative phosphorylation. Nature. 1962;196:1323–4.

    Article  PubMed  CAS  Google Scholar 

  5. Hines WJW, Smith MJH. Inhibition of dehydrogenases by salicylate. Nature. 1964;201:192.

    Article  PubMed  CAS  Google Scholar 

  6. Smith MJH, Bryant C, Hines WJW. Reversal by nicotinamide adenine dinucleotide of the inhibitory action of salicylate on mitochondrial malate dehydrogenase. Nature. 1964;202:96–7.

    Article  PubMed  CAS  Google Scholar 

  7. Gould BJ, Smith MJH. Salicylate and aminotransferases. J Pharm Pharmacol. 1965;17:83–8.

    Article  PubMed  CAS  Google Scholar 

  8. Gould BJ, Smith MJH. Inhibition of rat brain glutamate decarboxylase activity by salicylate in vitro. J Pharm Pharmacol. 1965;17:15–18.

    Article  PubMed  CAS  Google Scholar 

  9. Weiss WP, Campbell PL, Diebler GE, Sokoloff L. Effects of salicylate on amino acid incorporation into protein. J Pharmacol Exp Ther. 1962;136:366–71.

    PubMed  CAS  Google Scholar 

  10. Whitehouse MW. Some biochemical and pharmacological properties of anti-inflammatory drugs. Prog Drug Res. 1965;8:321–429.

    CAS  Google Scholar 

  11. Collier HOJ. Aspirin. Sci Am. 1963;209:97–108.

    CAS  Google Scholar 

  12. Collier HOJ. A pharmacological analysis of aspirin. Adv Pharmacol Chemother. 1969;7:333–405.

    Article  PubMed  CAS  Google Scholar 

  13. Collier HOJ, Shorley PG. Analgesic antipyretic drugs as antagonists of bradykinin. Br J Pharmacol. 1960;15:601–10.

    CAS  Google Scholar 

  14. Collier HOJ, James GWL, Schneider C. Antagonism by aspirin and fenamates of bronchoconstriction and nociception induced by adenosine-5’-triphosphate. Nature. 1966;212:411–12.

    Article  PubMed  CAS  Google Scholar 

  15. Berry PA, Collier HOJ. Bronchoconstrictor action and antagonism of a slow reacting substance from anaphylaxis of guinea-pig isolated lung. Br J Pharmacol. 1964;23:201–16.

    CAS  Google Scholar 

  16. Collier HOJ, Sweatman WJF. Antagonism by fenamates of prostaglandin F and of slow reacting substance on human bronchial muscle. Nature. 1968;219:864–5.

    Article  CAS  Google Scholar 

  17. Vane JR. The use of isolated organs for detecting active substances in the circulating blood. Br J Pharmacol Chemother. 1964;23:360–73.

    PubMed  CAS  Google Scholar 

  18. Piper PJ, Vane JR. The release of prostaglandins during anaphylaxis in guinea-pig isolated lungs. In: Mantegazza P, Horton EW, editors. Prostaglandins, Peptides and Amines. London/New York: Academic Press, 1969:15–19.

    Google Scholar 

  19. Hamberg M, Svensson J, Samuelsson B. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA. 1975;72:2994–8.

    Article  PubMed  CAS  Google Scholar 

  20. Palmer MA, Piper PJ, Vane JR. The release of RCS from chopped lung and its antagonism by anti-inflammatory drugs. Br J Pharmacol. 1970;40:581 P

    Google Scholar 

  21. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New Biol. 1971;231:232–5.

    PubMed  CAS  Google Scholar 

  22. Smith JH, Willis AL. Aspirin selectively inhibits prostaglandin production in human platelets. Nature. 1971;231:235–7.

    CAS  Google Scholar 

  23. Ferreira SH, Moncada S, Vane JR. Indomethacin and aspirin abolish prostaglandin release from spleen. Nature. 1971;231:237–9.

    Article  CAS  Google Scholar 

  24. Flower RJ, Vane JR. Inhibition of prostaglandin biosynthesis. Biochem Pharmacol. 1974; 23:1439–50.

    Article  PubMed  CAS  Google Scholar 

  25. Higgs GA, Moncada S, Vane JR. Eicosanoids in inflammation. Ann Clin Res. 1984;16:287–99.

    PubMed  CAS  Google Scholar 

  26. Vane JR, Botting RM. The mode of action of anti-inflammatory drugs. Postgrad Med J. 1990; 66(Supp1.4): S2- S17.

    PubMed  CAS  Google Scholar 

  27. Hemler M, Lands WEM, Smith WL. Purification of the cyclo-oxygenase that forms prostaglandins. Demonstration of the two forms of iron in the holoenzyme. J Biol Chem. 1976;251:5575–9.

    PubMed  CAS  Google Scholar 

  28. Smith WL. Prostaglandin biosynthesis and its compartmentation in vascular smooth muscle and endothelial cells. Annu Rev Physiol. l986;48:251–62.

    Article  Google Scholar 

  29. Picot D, Loll PJ, Garavito RM. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature. 1994;367:243–9.

    Article  PubMed  CAS  Google Scholar 

  30. Roth GJ, Stanford N, Majerus PW. Acetylation of prostaglandin synthetase by aspirin. Proc Nat’ Acad Sci USA. 1975;72:3073–6.

    Article  CAS  Google Scholar 

  31. Moncada S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976;263:663–5.

    Article  PubMed  CAS  Google Scholar 

  32. Whittle BJR, Higgs GA, Eakins KE, Moncada S, Vane JR. Selective inhibition of prostaglandin production in inflammatory exudates and gastric mucosa. Nature. 1980;284:271–3.

    Article  PubMed  CAS  Google Scholar 

  33. Xie W, Robertson DL, Simmons DL. Mitogen-inducible prostaglandin G/H synthase: a new target for nonsteroidal antiinflammatory drugs. Drug Dev Res. 1992;25:249–65.

    Article  CAS  Google Scholar 

  34. Fu J-Y, Masferrer JL, Seibert K, Raz A, Needleman P. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem. 1990;265:16737–40.

    PubMed  CAS  Google Scholar 

  35. Masferrer JL, Zweifel BS, Seibert K, Needleman P. Selective regulation of cellular cyclooxygenase by dexamethasone and endotoxin in mice. J Clin Invest. 1990;86:1375–9.

    Article  PubMed  CAS  Google Scholar 

  36. Xie W, Chipman JG, Robertson DL, Erikson RL, Simmons DL. Expression of a mitogenresponsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci USA. 1991;88:2692–6.

    Article  PubMed  CAS  Google Scholar 

  37. O’Banion MK, Sadowski HB, Winn V, Young DA. A serum-and glucocorticoid-regulated 4-kilobase mRNA encodes a cyclooxygenase-related protein. J Biol Chem. 1991;266:23261–7.

    PubMed  Google Scholar 

  38. Kujubu DA, Fletcher BS, Vamum BC, Lim RW, Herschman HR. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenate homologue. J Biol Chem. 1991;266:12866–72.

    PubMed  CAS  Google Scholar 

  39. Sirois J, Richards JS. Purification and characterisation of a novel, distinct isoform of prostaglandin endoperoxide synthase induced by human chorionic gonadotropin in granulosa cells of rat preovulatory follicles. J Biol Chem. 1992;267:6382–8.

    PubMed  CAS  Google Scholar 

  40. Weissmann G. Prostaglandins as modulators rather than mediators of inflammation. J Lipid Med. 1993;6:275–86.

    CAS  Google Scholar 

  41. Weissmann G. Aspirin. Sci Am. 1991;January:84–90.

    Google Scholar 

  42. Wu KK, Sanduja R, Tsai AL, Ferhanoglu B, Loose-Mitchell DS. Aspirin inhibits interleukin-1induced prostaglandin H synthase expression in cultured endothelial cells. Proc Nat’ Acad Sci USA. 1991;88:2384–7.

    Article  CAS  Google Scholar 

  43. Clissold SP. Paracetamol and phenacetin. Drugs. 1986;32(Suppl. 4):46–59.

    Article  PubMed  Google Scholar 

  44. Flower RJ, Vane JR. Inhibition of prostaglandin synthetase in brain explains the antipyretic activity of paracetamol (4-acetamidophenol). Nature. 1972;240:410–11.

    Article  PubMed  CAS  Google Scholar 

  45. Langenbach R, Morham SG, Tiano HF et al. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell. 1995;83:483–92.

    Article  PubMed  CAS  Google Scholar 

  46. Morham SG, Langenbach R, Loftin CD et al. Prostaglandin synthase 2 gene disruption causes renal pathology in the mouse. Cell. 1995;83:473–82.

    Article  PubMed  CAS  Google Scholar 

  47. Dinchuck JE, Car BD, Focht RJ et al. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature. 1995;378:406–9.

    Article  Google Scholar 

  48. Whittle BJR. Neuronal and endothelium-derived mediators in the modulation of the gastric microcirculation: integrity in the balance. Br J Pharmacol. 1993;110:3–17.

    Article  PubMed  CAS  Google Scholar 

  49. Rainsford KD, Willis C. Relationship of gastric mucosal damage induced in pigs by anti-inflammatory drugs to their effects on prostaglandin production. Dig Dis Sci. 1982;27:624–35.

    Article  PubMed  CAS  Google Scholar 

  50. Chen XS, Sheller JR, Johnson EN, Funk CD. Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature. 1994;372:179–82.

    Article  PubMed  CAS  Google Scholar 

  51. Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci USA. 1993;90:11693–7.

    Article  PubMed  CAS  Google Scholar 

  52. Meade EA, Smith WL, DeWitt DL. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem. 1993;268:6610–14

    PubMed  CAS  Google Scholar 

  53. Lanza FL. A review of gastric ulcer and gastroduodenal injury in normal volunteers receiving aspirin and other non-steroidal anti-inflammatory drugs. Scand J Gastroenterol. 1989;24(Suppl. 163):24–31.

    Article  Google Scholar 

  54. Akarasereenont P, Mitchell JA, Theimermann C, Vane JR. Relative potency of nonsteroid anti-inflammatory drugs as inhibitors of cyclooxygenase-1 or cyclooxygenase-2. Br J Pharmacol. 1994; 112(Suppl.): I83P.

    Google Scholar 

  55. Garcia Rodriguez LA, Jick H. Risk of upper gastrointestinal bleeding and perforation associated with individual non-steroidal anti-inflammatory drugs. Lancet. 1994;343:769–72.

    Article  Google Scholar 

  56. Vane JR, Botting RM. New insights into the mode of action of anti-inflammatory drugs. Inflamm Res. 1995;44:1–10.

    Article  PubMed  CAS  Google Scholar 

  57. Isakson P, Seibert K, Masferrer J, Salvemini D, Lee L, Needleman P. Discovery of a better aspirin. Presented at the Ninth International Conference on Prostaglandins and Related Compounds. Florence, Italy, June 1994.

    Google Scholar 

  58. Hubbard RC, Mehlisch DR, Jasper DR, Nugent MJ, Yu S, Isakson PC. SC-58635, a highly selective inhibitor of COX-2, is an effective analgesic in an acute post-surgical pain model. J Invest Med. 1996;44:293А.

    Google Scholar 

  59. Chan C-C, Boyce S, Brideau C et al. Pharmacology of a selective cyclooxygenase-2 inhibitor, L745,337: a novel nonsteroidal anti-inflammatory agent with an ulcerogenic sparing effect in rat and nonhuman primate stomach. J Pharmacol Exp Ther. 1995;274:1531–7.

    PubMed  CAS  Google Scholar 

  60. Churchill L, Graham A, Shih C-K, Pauletti D, Farina PR, Grob PM. Selective inhibition of human cyclooxygenase-2 by meloxicam. Inflammopharmacology. 1996;4:125–35.

    Article  CAS  Google Scholar 

  61. Gans KR, Galbraith W, Roman RJ et al. Anti-inflammatory and safety profile of DuP 697, a novel orally effective prostaglandin synthesis inhibitor. J Pharmacol Exp Ther. 1990;254:180–7.

    PubMed  CAS  Google Scholar 

  62. Böttcher I, Schweizer A, Glatt M, Werner H. A sulphonamidoindanone CGP 28237 (ZK 34228), a novel non-steroidal anti-inflammatory agent without gastrointestinal ulcerogenicity in rats. Drugs Exp Clin Res. 1987;13:237–45.

    PubMed  Google Scholar 

  63. Carr DP, Henn R, Green JR, Böttcher I. Comparison of the systemic inhibition of thromboxane synthesis, anti-inflammatory activity and gastro-intestinal toxicity of non-steroidal anti-inflammatory drugs in the rat. Agents Actions. 1986;19:374–5.

    Article  PubMed  CAS  Google Scholar 

  64. Futaki N, Takahashi S, Yokoyama M, Arai S, Higuchi S, Otomo S. NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins. 1994;47:55–9.

    PubMed  CAS  Google Scholar 

  65. Thun MJ, Namboodiri MM, Heath CWJ. Aspirin use and reduced risk of fatal colon cancer. N Engl J Med. 1991;325:1593–6.

    Article  PubMed  CAS  Google Scholar 

  66. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994;104:1183–8.

    Google Scholar 

  67. Distel M, Mueller C, Bluhmki E, Fries J. Safety of meloxicam: a global analysis of clinical trials. Br J Rheumatol. 1996;35(Supp1. 1):68–77.

    Article  PubMed  CAS  Google Scholar 

  68. Henry D, Lim LL-Y, Rodriguez LAG et a1. Variability in risk of gastrointestinal complications with individual non-steroidal anti-inflammatory drugs: results of a collaborative meta-analysis. Br Med J. 1996;312:1563–6.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vane, J.R., Botting, R.M. (1996). The history of anti-inflammatory drugs and their mechanism of action. In: Bazan, N., Botting, J., Vane, J. (eds) New Targets in Inflammation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5386-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5386-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6265-7

  • Online ISBN: 978-94-011-5386-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics